RESUMO
Two-dimensional layered materials are considered ideal platforms to study novel small-scale optoelectronic devices due to their unique electronic structures and fantastic physical properties. However, it is urgent to further improve the light-matter interaction in these materials because their light absorption efficiency is limited by the atomically thin thickness. One of the promising approaches is to engineer the plasmonic environment around 2D materials for modulating light-matter interaction in 2D materials. This method greatly benefits from the advances in the development of nanofabrication and out-plane van der Waals interaction of 2D materials. In this paper, we review a series of recent works on 2D materials integrated with plasmonic environments, including the plasmonic-enhanced photoluminescence quantum yield, strong coupling between plasmons and excitons, nonlinear optics in plasmonic nanocavities, manipulation of chiral optical signals in hybrid nanostructures, and the improvement of the performance of optoelectronic devices based on composite systems.
RESUMO
The objective of this study was to evaluate clinical outcomes for patients undergoing IVF treatment where an artificial intelligence (AI) platform was utilized by clinicians to help determine the optimal starting dose of FSH and timing of trigger injection. This was a prospective clinical trial with historical control arm. Four physicians from two assisted reproductive technology treatment centers in the United States participated in the study. The treatment arm included patients undergoing autologous IVF cycles between December 2022-April 2023 where the physician use AI to help select starting dose of follicle stimulating hormone (FSH) and trigger injection timing (N = 291). The control arm included historical patients treated where the same doctor did not use AI between September 2021 and September 2022. The main outcome measures were total FSH used and average number of mature metaphase II (MII) oocytes. There was a non-significant trend towards improved patient outcomes and a reduction in FSH with physician use of AI. Overall, the average number of MIIs in the treatment vs. control arm was 12.20 vs 11.24 (improvement = 0.96, p = 0.16). The average number of oocytes retrieved in the treatment vs. control arm was 16.01 vs 14.54 (improvement = 1.47, p = 0.08). The average total FSH in the treatment arm was 3671.95 IUs and the average in the control arm was 3846.29 IUs (difference = -174.35 IUs, p = 0.13). These results suggests that AI can safely assist in refining the starting dose of FSH while narrowing down the timing of the trigger injection during ovarian stimulation, benefiting the patient in optimizing the count of MII oocytes retrieved.
Assuntos
Fertilização in vitro , Hormônio Foliculoestimulante , Aprendizado de Máquina , Oócitos , Indução da Ovulação , Humanos , Feminino , Estudos Prospectivos , Adulto , Hormônio Foliculoestimulante/administração & dosagem , Indução da Ovulação/métodos , Fertilização in vitro/métodos , Oócitos/citologia , Recuperação de Oócitos/métodos , GravidezRESUMO
The electrospinning technology has set off a tide and given rise to the attention of a widespread range of research territories, benefiting from the enhancement of nanofibers which made a spurt of progress. Nanofibers, continuously produced via electrospinning technology, have greater specific surface area and higher porosity and play a non-substitutable key role in many fields. Combined with the degradability and compatibility of the natural structure characteristics of polysaccharides, electrospun polysaccharide nanofiber membranes gradually infiltrate into the life field to help filter air contamination particles and water pollutants, treat wounds, keep food fresh, monitor electronic equipment, etc., thus improving the life quality. Compared with the evaluation of polysaccharide-based nanofiber membranes in a specific field, this paper comprehensively summarized the existing electrospinning technology and focused on the latest research progress about the application of polysaccharide-based nanofiber in different fields, represented by starch, chitosan, and cellulose. Finally, the benefits and defects of electrospun are discussed in brief, and the prospects for broadening the application of polysaccharide nanofiber membranes are presented for the glorious expectation dedicated to the progress of the eras.
Assuntos
Quitosana , Nanofibras , Nanofibras/química , Alicerces Teciduais/química , Polissacarídeos/química , AmidoRESUMO
Propane/propene (C3 H8 /C3 H6 ) separation is essential in the petrochemical industry but challenging because of their similar physical and chemical properties. Adsorptive separation with C3 H8 -selective porous materials can energy-efficiently produce high-purity C3 H6 , which is highly promising for replacing conventional cryogenic distillation but suffers from unsatisfactory performance. Herein, through the precise incorporation of fluorinated functional groups into the confined pore space, a new fluorinated metal-organic framework (FDMOF-2) featuring the unique and strong C3 H8 -trap is successfully constructed. FDMOF-2 exhibits an unprecedented C3 H8 capture capacity of 140 cm3 cm-3 and excellent C3 H8 /C3 H6 (1:1, v/v) selectivity up to 2.18 (298 K and 1 bar), thus setting new benchmarks for all reported porous materials. Single-crystal X-ray diffraction studies reveal that the tailored pore confinement in FDMOF-2 provides stronger and multiple attractive interactions with C3 H8 , enabling excellent binding affinities. Breakthrough experiments demonstrate that C3 H8 can be directly extracted from various C3 H8 /C3 H6 mixtures with FDMOF-2, affording an outstanding C3 H6 production (501 mmol L-1 ) with over 99.99% purity. Benefiting from the robust framework and hydrophobic ligands, the separation performance of FDMOF-2 can be well maintained even under 70% relative humidity conditions.
RESUMO
The self-healing property based on metal-ligand physical coordination is particularly interesting in bio-hydrogel science due to its allowance for multiple local healing events to process. As the most abundant renewable green resource in nature, Gleditsia sinensis galactomannan has great potential as a starting material for functional materials. In this study, the biocompatible Gleditsia sinensis galactomannan and cellulose were firstly chemically modified and then taken as the main constituent for constructing the metal-ligand coordination through an enzyme-regulated strategy. The hydrogel could quickly gelatinize in the surrounding environment, corresponding to the violent exothermic phenomenon, and exhibit extraordinary self-healing behavior. The molecular dynamics simulation of the hydrogel confirmed the more stable coordinated configuration from Fe(III)-chelates than Fe(II)-chelates. The morphology, mechanical property, antibacterial, and cytotoxicity of the prepared hydrogel were also studied. Our results indicated that galactomannan hydrogel based on the metal-ligand networks could balance the kinetic stability and intrinsic healability through the enzyme-induced route, which provide a new perspective in the field of biomaterial applications.
Assuntos
Gleditsia , Gleditsia/química , Hidrogéis/química , Compostos Férricos , Ligantes , Cicatrização , Antibacterianos/farmacologiaRESUMO
As an important part of electric vehicles, lithium-ion battery packs will have a certain environmental impact in the use stage. To analyze the comprehensive environmental impact, 11 lithium-ion battery packs composed of different materials were selected as the research object. By introducing the life cycle assessment method and entropy weight method to quantify environmental load, a multilevel index evaluation system was established based on environmental battery characteristics. The results show that the Li-S battery is the cleanest battery in the use stage. In addition, in terms of power structure, when battery packs are used in China, the carbon footprint, ecological footprint, acidification potential, eutrophication potential, human toxicity cancer and human toxicity noncancer are much higher than those in the other four regions. Although the current power structure in China is not conducive to the sustainable development of electric vehicles, the optimization of the power structure is expected to make electric vehicles achieve clean driving in China.
RESUMO
Mobile payment has emerged as a popular payment method in many countries. While much research has focused on the antecedents of mobile payment adoption, limited research has investigated the consequences of mobile payment usage relating to how it would influence consumer behaviors (e.g., purchase intention or willingness to pay). Here, we propose that mobile payment not just reduces the "pain of paying," a traditional view explaining why cashless payment stimulates spending, but it also evokes the "pleasure of paying," raising from the enhanced processing fluency in completing transactions. We tested this new conceptualization of "pleasure of paying" using EEG, complementing other behavioral measures. In two studies, we found that mobile payment effectively enhanced purchase likelihood (study 1, N = 66) and such an enhancement is generalizable to both hedonic and utilitarian products (study 2, N = 29). By employing EEG measures, we provided the first neural evidence of "pleasure of paying" in addition to the signal of "pain of paying." Critically, we demonstrated that the "pleasure of paying" is a distinctive psychological mechanism that is induced by mobile payment usage and that the "pleasure of paying" joins the "pain of paying" to mediate the increased purchase intention. We discuss the contributions and implications of these results to the ongoing evolution of cashless payment societies.
RESUMO
Adsorption separation technology using adsorbents is promising as an alternative to the energy-demanding cryogenic distillation of natural gas (CH4/N2) separation. Although a few adsorbents, such as metal-organic frameworks (MOFs), with high performance for CH4/N2 separation, have been reported, it is still challenging to target the desired adsorbents for the actual CH4/N2 separation under humid conditions because the adsorption capacity and selectivity of the adsorbents might be mainly dampened by water vapor. Except for the high CH4 uptake and CH4/N2 selectivity, the adsorption material should simultaneously have excellent stability against moisture and relatively low-water absorption affinity. Here, we tuned the ligands and metal sites of reticular MOFs, Zn-benzene-1,4-dicarboxylic acid-1,4-diazabicyclo[2.2.2]octane (Zn-BDC-DABCO) (DMOF), affording a series of isostructural MOFs (DMOF-N, DMOF-A1, DMOF-A2, and DMOF-A3). Because of the finely engineered pore size and introduced aromatic rings in the functional DMOF, gas sorption results reveal that the materials show improved performance with a benchmark CH4 uptake of 37 cm3/g and a high CH4/N2 adsorption selectivity of 7.2 for DMOF-A2 at 298 K and 1.0 bar. Moisture stability experiments show that DMOF-A2 is a robust MOF with low water vapor capacity even at â¼40% relative humidity (RH) because of the presence of more hydrophobic aromatic rings. Breakthrough experiments verify the excellent CH4/N2 separation performances of DMOF-A2 under high humidity.
RESUMO
As a next-generation electrochemical energy storage technology, rechargeable magnesium (Mg)-based batteries have attracted wide attention because they possess a high volumetric energy density, low safety concern, and abundant sources in the earth's crust. While a few reviews have summarized and discussed the advances in both cathode and anode materials, a comprehensive and profound review focusing on the material design strategies that are both representative of and peculiar to the performance improvement of rechargeable Mg-based batteries is rare. In this mini-review, all nine of the material design strategies and approaches to improve Mg-ion storage properties of cathode materials have been comprehensively examined from both internal and external aspects. Material design concepts are especially highlighted, focusing on designing "soft" anion-based materials, intercalating solvated or complex ions, expanding the interlayer of layered cathode materials, doping heteroatoms into crystal lattice, size tailoring, designing metastable-phase materials, and developing organic materials. To achieve a better anode, strategies based on the artificial interlayer design, efficient electrolyte screening, and alternative anodes exploration are also accumulated and analyzed. The strategy advances toward Mg-S and Mg-Se batteries are summarized. The advantages and disadvantages of all-collected material design strategies and approaches are critically discussed from practical application perspectives. This mini-review is expected to provide a clear research clue on how to rationally improve the reliability and feasibility of rechargeable Mg-based batteries and give some insights for the future research of Mg-based batteries as well as other multivalent-ion battery chemistries.