Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Therm Biol ; 94: 102725, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33292981

RESUMO

Temperature is a key environmental factor, and understanding how its fluctuations affect physiological and metabolic processes is critical for fish. The present study characterizes the energy response and fatty acid metabolism in Onychostoma macrolepis exposed to low temperature (10 °C). The results demonstrated that cold stress remarkably disrupted the energy homeostasis of O. macrolepis, then the AMP-activated protein kinase (AMPK) could strategically mobilize carbohydrates and lipids. In particular, when the O. macrolepis were faced with cold stress, the lipolysis was stimulated along with the enhanced fatty acid ß-oxidation for energy, while the fatty acid synthesis was supressed in the early stage. Additionally, the fatty acid composition analysis suggested that saturated fatty acid (SFA) might accumulate while monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA) in storage lipids (mainly containing non-polar lipid, NPL) could be utilized to supply energy during cold acclimation. Altogether, this study may provide some meritorious for understanding the cold-tolerant mechanism of fish in the viewpoint of energy balance combined with fatty acid metabolism, and thus to contribute to this species rearing in fish farms in the future.


Assuntos
Resposta ao Choque Frio/fisiologia , Cyprinidae/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Nucleotídeos de Adenina/metabolismo , Tecido Adiposo/metabolismo , Animais , Colesterol/sangue , Resposta ao Choque Frio/genética , Proteínas de Peixes/sangue , Proteínas de Peixes/genética , Expressão Gênica , Glucose/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Músculos/metabolismo , Temperatura , Triglicerídeos/metabolismo
2.
Fish Physiol Biochem ; 46(5): 1631-1644, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32651854

RESUMO

Considering the excessive lipid accumulation status caused by the increased dietary lipid intake in farmed fish, this study aimed to investigate the systemic effect of dietary lipid levels and α-lipoic acid supplementation on nutritional metabolism in zebrafish. A total of 540 male zebrafish (0.17 g) were fed with normal (CT) and high lipid level (HL) diets for 6 weeks, then fed on 1000 mg/kg α-lipoic acid supplementation diets for the second 6 weeks. HL diets did not affect whole fish protein content, but increased ASNS expression (P < 0.05). Dietary α-lipoic acid increased whole fish protein content, and decreased the expressions of protein catabolism-related genes in muscle of high lipid level groups (P < 0.05). Furthermore, HL diets increased the whole fish lipid content and the expressions of gluconeogenesis and lipogenesis-related genes (P < 0.05), and α-lipoic acid counteracted these effects and decreased the whole fish triglyceride and cholesterol contents and expressions of lipogenesis-related genes, with the enhanced expressions of lipolytic genes, especially in high lipid groups (P < 0.05). HL diets did not affect hepatocyte mitochondrial quantity or the mRNA expressions of mitochondrial biogenesis and electron transport chain-related genes; they were significantly increased by dietary α-lipoic acid (P < 0.05). These results indicated that high dietary lipid promotes lipid accumulation, while α-lipoic acid increases protein content in association of enhanced lipid catabolism. Thus, dietary α-lipoic acid supplementation could reduce lipid accumulation under high lipid, which provides a promising new approach in solving the problem of lipid accumulation in farmed fish.


Assuntos
Ração Animal/análise , Dieta/veterinária , Gorduras na Dieta/administração & dosagem , Ácido Tióctico/administração & dosagem , Peixe-Zebra , Fenômenos Fisiológicos da Nutrição Animal , Animais , Proteínas Alimentares/metabolismo , Suplementos Nutricionais , Regulação da Expressão Gênica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ácido Tióctico/farmacologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-30593870

RESUMO

Fatty acid metabolism is crucial for maintaining energy homeostasis in aquatic vertebrates experiencing environmental stress. Both sterol regulatory element-binding protein 1 (SREBP-1) and peroxisome proliferator-activated receptor α (PPARα) are the key regulators of fatty acid metabolism. In this study, the coding sequences (CDS) of SREBP-1 and PPARα were firstly identified and characterized from Onychostoma macrolepis, encoding peptides of 1136 and 470 amino acids, respectively. The functional domains in O. macrolepis SREBP-1 and PPARα proteins retained the high similarity with those of other animals, at 74.69% and 77.29%, respectively. The mRNA encoding SREBP-1 was primarily expressed in the muscle and PPARα was highly expressed in the liver and intestine. Under thermal exposure, the content of non-esterified fatty acid (NEFA) decreased gradually after 1 h in the liver and muscle of O. macrolepis, which might be due to that the organism meet more energy expenditure via fatty acid ß-oxidation. Furthermore, the mRNA expression level of SREBP-1 decreased, while the mRNA expression level of PPARα increased from 0 h to 6 h in the liver. And we found that the mRNA expression levels of both SREBP-1 and PPARα decreased significantly at 48 h (P < .05) in the muscle, which was in accordance with the significant decrease of target gene FAS and CPT1A mRNA expression levels, respectively. It might be the physiological adjustment that the fish adapted to thermal exposure at the end of experiment. These results illustrate that O. macrolepis SREBP-1 and PPARα-mediated fatty acid metabolism is a fundamental requirement for thermal adaptation.


Assuntos
Cyprinidae/metabolismo , Proteínas de Peixes/metabolismo , Temperatura Alta , PPAR alfa/metabolismo , RNA Mensageiro/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Sequência de Aminoácidos , Animais , Cyprinidae/genética , Ácidos Graxos não Esterificados/metabolismo , Proteínas de Peixes/genética , Lipólise , PPAR alfa/química , PPAR alfa/genética , Filogenia , Homologia de Sequência de Aminoácidos , Proteína de Ligação a Elemento Regulador de Esterol 1/química , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-27872010

RESUMO

Factor forkhead box O1 (FoxO1) is a transcription factor and plays an important role in insulin-mediated lipid metabolism. In the present study, two distinct FoxO1 cDNAs, designated FoxO1a and FoxO1b, were firstly isolated and characterized from grass carp Ctenopharyngodon idella, encoding peptides of 654 and 631 amino acids, respectively. Phylogenetic and synteny analyses suggested that FoxO1a and FoxO1b were derived from paralogous genes that could be originated from teleost-specific genome duplication (TSGD) event. Analysis of the exon-intron structures clarified that grass carp FoxO1a and FoxO1b comprise 3 coding exons and contain a extra intron compared with human and mouse FoxO1. Both FoxO1a and FoxO1b mRNAs were expressed in a wide range of tissues, but the abundance of each FoxO1 mRNA showed the tissue- dependent expression patterns. Time-course analysis of FoxO1 expressions indicated that the level of FoxO1a mRNA reached almost maximal level at day 2, while that of FoxO1b mRNA reached almost maximal level at day 4 during grass carp primary preadipocyte differentiation. In insulin-inhibited adipocyte lipolysis, only FoxO1a showed a significant decrease in adipocyte, indicating that two FoxO1 isoforms may serve somewhat different roles in the regulation of lipolysis by insulin. These results suggested that grass carp FoxO1a and FoxO1b may play different roles in tissues, and their expression levels were differently modulated by insulin in adipocyte.


Assuntos
Adipócitos/citologia , Fatores de Transcrição Forkhead/metabolismo , Insulina/fisiologia , Lipólise , RNA Mensageiro/metabolismo , Sequência de Aminoácidos , Animais , Carpas , Éxons , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/genética , Íntrons , Homologia de Sequência de Aminoácidos
5.
Gene ; 830: 146503, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35487395

RESUMO

Apis cerana in Changbai Mountain is an ecological type of Apis cerana, which is an excellent breeding material with cold-resistant developed by long-term natural selection under the ecological conditions. However, the physiological and molecular mechanisms of Changbai Mountain population under cold stress are still unclear. In this study, the Nanopore sequencing was carried out for the transcriptome of Apis cerana in Changbai Mountain in the coldest period of overwintering, which will provide a reference to the cold-resistant mechanism. We determined 5,941 complete ORF sequences, 1,193 lncRNAs, 619 TFs, 10,866 SSRs and functional annotations of 11,599 new transcripts. Our results showed that the myosin family and the C2H2 zinc finger protein transcription factor family possibly have significant impacts on the response mechanism of cold stress during overwintering. In addition, the cold environment alters genes expression profiles in honeybees via different AS and APA mechanisms. These altered genes in Hippo, Foxo, and MARK pathways help them counter the stress of cold in overwinter period. Our results might provide clues about the response of eastern honeybees to extreme cold, and reflect the possible genetic basis of physiological changes.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Animais , Abelhas/genética , Regulação da Expressão Gênica , Seleção Genética
6.
Artigo em Chinês | MEDLINE | ID: mdl-21823322

RESUMO

OBJECTIVE: To clone and express three VAR2CSA duffy antigen-binding ligand (DBL) domains (DBL4/ 5/6) encoded by var2csa gene of a Hainan isolate of Plasmodium falciparum, and study the difference of chondroitin sulfate A (CSA)-binding activity among them. METHODS: Three DBL domains was amplified by PCR and cloned into the vector pMD18-T. The recombinant plasmids were identified by enzyme digestion and sequencing, and then subcloned into the prokaryotic expression vector pET-22b. The recombinant plasmid was transformed into E. coli BL21 (DE3) and followed by expression of the protein induced by IPTG. The recombinant protein was purified with His GraciTrap kit and identified by SDS-PAGE and Western blotting. CSA-binding activity of the three recombinant DBL domains was assayed by ELISA. RESULTS: The target genes were amplified with the length of 996 bp, 859 bp and 894 bp. The constructed recombinant plasmids were identified by enzyme digestion and DNA sequencing. The recombinant proteins (DBL4/5/6) were purified, the relative molecular mass of DBLfA, DBL5 and DBL6 was Mr 439 800, Mr 34,500 and Mr 36,000, respectively. The purified protein has been confirmed with immunogenicity by Western blotting. The results of adhesion experiment indicated that A405 values of DBL5 domain with different concentration were significantly higher than that of DBLA and DBL6. CONCLUSION: The three recombinant proteins (DBLA/5/6) of VAR2CSA DBL domains were expressed, and DBL5 domain has high binding affinity with CSA.


Assuntos
Antígenos de Protozoários/genética , Plasmodium falciparum/classificação , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética , Proteínas Recombinantes/metabolismo , Antígenos de Protozoários/metabolismo , Sulfatos de Condroitina/metabolismo , Clonagem Molecular , DNA de Protozoário/genética , Escherichia coli/metabolismo , Vetores Genéticos , Plasmodium falciparum/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/genética
7.
Front Cell Infect Microbiol ; 11: 779259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733798

RESUMO

Clonorchiasis, which is caused by Clonorchis sinensis, is an important foodborne disease worldwide. The excretory-secretory products (ESPs) of C. sinensis play important roles in host-parasite interactions by acting as causative agents. In the present study, the ESPs and sera positive for C. sinensis were collected to identify proteins specific to the sera of C. sinensis (i.e., proteins that do not cross-react with Fasciola hepatica and Schistosoma japonicum) at different infection periods. Briefly, white Japanese rabbits were artificially infected with C. sinensis, and their sera were collected at 7 days post-infection (dpi), 14 dpi, 35 dpi, and 77 dpi. To identify the specific proteins in C. sinensis, a co-immunoprecipitation (Co-IP) assay was conducted using shotgun liquid chromatography tandem-mass spectrometry (LC-MS/MS) to pull down the sera roots of C. sinensis, F. hepatica, and S. japonicum. For the annotated proteins, 32, 18, 39, and 35 proteins specific to C. sinensis were pulled down by the infected sera at 7, 14, 35, and 77 dpi, respectively. Three proteins, Dynein light chain-1, Dynein light chain-2 and Myoferlin were detected in all infection periods. Of these proteins, myoferlin is known to be overexpressed in several human cancers and could be a promising biomarker and therapeutic target for cancer cases. Accordingly, this protein was selected for further studies. To achieve a better expression, myoferlin was truncated into two parts, Myof1 and Myof2 (1,500 bp and 810 bp), based on the antigenic epitopes provided by bioinformatics. The estimated molecular weight of the recombinant proteins was 57.3 ku (Myof1) and 31.3 ku (Myof2). Further, both Myof1 and Myof2 could be probed by the sera from rabbits infected with C. sinensis. No cross-reaction occurred with the positive sera of S. japonica, F. hepatica, and negative controls. Such findings indicate that myoferlin may be an important diagnostic antigen present in the ESPs. Overall, the present study provides new insights into proteomic changes between ESPs and hosts in different infection periods by LC-MS/MS. Moreover, myoferlin, as a biomarker, may be used to develop an objective method for future diagnosis of clonorchiasis.


Assuntos
Clonorquíase , Clonorchis sinensis , Animais , Cromatografia Líquida , Clonorquíase/diagnóstico , Proteômica , Coelhos , Espectrometria de Massas em Tandem
8.
Mol Biol Rep ; 37(5): 2173-82, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19693701

RESUMO

Mitochondrial biogenesis is inherent to adipocyte differentiation. Mitochondrial dysfunction leads to abnormal lipid accumulation or the deterioration of the differentiation process. The aim of this study is to investigate the mitochondrial development during the differentiation of rat primary adipocytes and the effect of mitochondrial dysfunction on this process. We found, for the first time, that the number of mitochondria markedly increased during adipocyte differentiation by transmission electron microscopy. By immunofluorescence staining that the protein content of Cyt c increased in differentiated adipocyte in comparison with preadipocyte. The mRNA expression levels of mitochondrial gene including cytochromes c (Cyt c), malate dehydrogenases (MDH), and peroxisome proliferator activated receptor (PPAR) gamma coactivator-1beta (PGC-1beta) significantly increased along with the proceeding of adipocyte differentiation. The damage to mitochondrial respiratory chain function by rotenone caused significant decrease in gene expressions including mitochondrial MDH and PGC-1beta, and PPARgamma, CAAT/enhancer binding protein alpha (C/EBPalpha) and sterol regulatory element binding protein-1c (SREBP-1c), which are known as transcription factors of differentiation, and differentiation marker gene named fatty acid synthetase. Moreover, an apparent decrease was found in the synthesis of triglyceride and ATP due to the damage to mitochondria by rotenone. Based on the above results, our present study revealed that the density and oxidative capacity of mitochondrial markedly increased during primary adipocyte differentiation, and on the other hand, we suggested that mitochondria dysfunction might inhibit the differentiation process.


Assuntos
Adipócitos/citologia , Diferenciação Celular , Mitocôndrias/patologia , Trifosfato de Adenosina/metabolismo , Adipócitos/metabolismo , Adipócitos/ultraestrutura , Adipogenia/genética , Animais , Western Blotting , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular/genética , Proliferação de Células , Forma Celular , Células Cultivadas , Regulação da Expressão Gênica , Espaço Intracelular/metabolismo , Masculino , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Sprague-Dawley , Coloração e Rotulagem , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-27593560

RESUMO

The carnitine palmitoyltransferase (CPT) gene family plays an essential role in fatty acid ß-oxidation in the mitochondrion. We identified six isoforms of the CPT family in grass carp and obtained their complete coding sequences (CDS). The isoforms included CPT 1α1a, CPT 1α1b, CPT 1α2a, CPT 1α2b, CPT 1ß, and CPT 2, which may have resulted from fish-specific genome duplication. Sequence analysis showed that the predicted protein structure was different among the CPT gene family members in grass carp. The N-terminal domain of grass carp CPT 1α1a, CPT 1α1b, CPT 1α2a, and CPT 1α2b contained two transmembrane region domains and two acyltransferase choActase domains that exist in human and mouse proteins also; however, only one acyltransferase choActase domain was found in grass carp CPT 1ß. The grass carp CPT 2 had two acyltransferase choActase domains. The grass carp CPT 1α1b, CPT 1α2a, CPT 1α2b, and CPT 1ß contained 18 coding exons, while CPT 1α1a and CPT 2 consisted of 17 coding exons and 5 coding exons, respectively. The mRNA of the six CPT isoforms was expressed in a wide range of tissues, but the mRNA abundance of each CPT showed tissue-dependent expression patterns. The expression of CPT 1α1a, CPT 1α2a, and CPT 1ß at 48h post-feeding was significantly increased in the liver (P<0.01, P<0.05, and P<0.01, respectively). The diverse responses of multiple isoforms in the liver during nutritional limitation suggest that they may play different roles in fatty acid ß-oxidation.


Assuntos
Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Carpas/genética , Carpas/metabolismo , Sequência de Aminoácidos , Animais , Carnitina O-Palmitoiltransferase/química , Jejum/metabolismo , Ácidos Graxos/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Oxirredução , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa