Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(5): e2205625, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36449575

RESUMO

Electrochemical nitrate reduction to ammonia (NRA) provides an efficient, sustainable approach to convert the nitrate pollutants into value-added products, which is regarded as a promising alternative to the industrial Haber-Bosch process. Recent studies have shown that oxygen vacancies of oxide catalysts can adjust the adsorption energies of intermediates and affect their catalytic performance. Compared with other metal oxides, perovskite oxides can allow their metal cations to exist in abnormal or mixed valence states, thereby resulting in enriched oxygen vacancies in their crystal structures. Here, the catalytic activities of perovskite oxides toward NRA catalysis with respect to the amount of oxygen vacancies are explored, where four perovskite oxides with different crystal structures (including cubic LaCrO3 , orthorhombic LaMnO3 and LaFeO3 , hexagonal LaCoO3 ) are chosen and investigated. By combining X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy and electrochemical measurements, it is found that the amount of oxygen vacancies in these perovskite oxides surprisingly follow the same order as their activities toward NRA catalysis (LaCrO3  < LaMnO3  < LaFeO3  < LaCoO3 ). Further theoretical studies reveal that the existence of oxygen vacancies in LaCoO3 perovskite can decrease the energy barriers for reduction of *HNO3 to *NO2 , leading to its superior NRA performance.

2.
Adv Sci (Weinh) ; 9(26): e2203181, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35863908

RESUMO

Constructing intimate coupling between transition metal and carbon nanomaterials is an effective means to achieve strong immobilization of lithium polysulfides (LiPSs) in the applications of lithium-sulfur (LiS) batteries. Herein, a universal spinning-coordinating strategy of constructing continuous metal-nitrogen-carbon (MNC, M = Co, Fe, Ni) heterointerface is reported to covalently bond metal nanoparticles with nitrogen-doped porous carbon fibers (denoted as M/MN@NPCF). Guided by theoretical simulations, the Co/CoN@NPCF hybrid is synthesized as a proof of concept and used as an efficient sulfur host material. The polarized CoNC bridging bonds can induce rapid electron transfer from Co nanoparticles to the NPCF skeleton, promoting the chemical anchoring of LiPSs to improve sulfur utilization. Hence, the as-assembled LiS battery presents a remarkable capacity of 781 mAh g-1 at 2.0 C and a prominent cycling lifespan with a low decay rate of only 0.032% per cycle. Additionally, a well-designed Co/CoN@NPCF-S electrode with a high sulfur loading of 7.1 mg cm-2 is further achieved by 3D printing technique, which demonstrates an excellent areal capacity of 6.4 mAh cm-2 at 0.2 C under a lean-electrolyte condition. The acquired insights into strongly coupled continuous heterointerface in this work pave the way for rational designs of host materials in LiS systems.

3.
J Colloid Interface Sci ; 602: 159-167, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34119755

RESUMO

Designing efficient electrocatalysts for the oxygen reduction reaction (ORR) is crucial to enhance the energy efficiencies of metal-air batteries and fuel cells. Palladium (Pd) catalysts show great potential due to their high intrinsic activity towards ORR but suffer from inferior durability. Here, we aim to employ tin oxide (SnO2) supports to tailor the lattice strain and electron density of Pd catalysts to enhance their ORR performance. By using electrospinning and solvothermal techniques, a hierarchical Pd/SnO2 hybrid catalyst was facilely synthesized with Pd nanoparticles anchored onto both the inside and outside walls of nanotube-like SnO2 supports. Owing to the SnO2 supports and the endowing metal-support interactions, tensile-strain and electron-rich features were both verified for the Pd nanoparticles in the Pd/SnO2 catalyst. In comparison, no such features were found for the Pd nanoparticles in the Pd/C catalyst. As a consequence, the Pd/SnO2 hybrid catalyst exhibits 2.5-times higher mass activity than the Pd/C catalyst and greatly improved durability with a current decay of 4% loss over 50 h compared with that (18%) of the Pd/C catalyst.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa