Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(26): e2208055, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36949498

RESUMO

Synthesis of high quality colloidal Cerium(III) doped yttrium aluminum garnet (Y3 Al5 O12 :Ce3+ , "YAG:Ce") nanoparticles (NPs) meeting simultaneously both ultra-small size and high photoluminescence (PL) performance is challenging, as generally a particle size/PL trade-off has been observed for this type of nanomaterials. The glycothermal route is capable to yield ultra-fine crystalline colloidal YAG:Ce nanoparticles with a particle size as small as 10 nm but with quantum yield (QY) no more than 20%. In this paper, the first ultra-small YPO4 -YAG:Ce nanocomposite phosphor particles having an exceptional QY-to-size performance with an QY up to 53% while maintaining the particle size ≈10 nm is reported. The NPs are produced via a phosphoric acid- and extra yttrium acetate-assisted glycothermal synthesis route. Localization of phosphate and extra yttrium entities with respect to cerium centers in the YAG host has been determined by fine structural analysis techniques such as X-ray diffration (XRD), solid state nuclear magnetic resonance (NMR), and high resolution scanning transmission electron microscopy (HR-STEM), and shows distinct YPO4 and YAG phases. Finally, a correlation between the additive-induced physico-chemical environment change around cerium centers and the increasing PL performance has been suggested based on electron paramagnetic resonance (EPR), X-ray photoelectron spectrometry (XPS) data, and crystallographic simulation studies.

2.
Langmuir ; 35(49): 16256-16265, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31696717

RESUMO

The design of high-performance energy-converting materials is an essential step for the development of sensors, but the production of the bulk materials currently used remains costly and difficult. Therefore, a different approach based on the self-assembly of nanoparticles has been explored. We report on the preparation by solvothermal synthesis of highly crystalline CeF3 nanodiscs. Their surface modification by bisphosphonate ligands led to stable, highly concentrated, colloidal suspensions in water. Despite the low aspect ratio of the nanodiscs (∼6), a liquid-crystalline nematic phase spontaneously appeared in these colloidal suspensions. Thanks to the paramagnetic character of the nanodiscs, the nematic phase was easily aligned by a weak (0.5 T) magnetic field, which provides a simple and convenient way of orienting all of the nanodiscs in suspension in the same direction. Moreover, the more dilute, isotropic, suspensions displayed strong (electric and magnetic) field-induced orientation of the nanodiscs (Kerr and Cotton-Mouton effects), with fast enough response times to make them suitable for use in electro-optic devices. Furthermore, an emission study showed a direct relation between the luminescence intensity and magnetic-field-induced orientation of the colloids. Finally, with their fast radiative recombination decay rates, the nanodiscs show luminescence properties that compare quite favorably with those of bulk CeF3. Therefore, these CeF3 nanodiscs are very promising building blocks for the development and processing of photosensitive materials for sensor applications.

3.
Phys Chem Chem Phys ; 21(10): 5455-5465, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30801105

RESUMO

Repeated attacks using organophosphorus compounds, in military conflicts or terrorist acts, necessitate developing inexpensive and readily available decontamination systems. Nanosized cerium oxide is a suitable candidate, acting as a heterogeneous catalyst for the degradation of organophosphorus compounds such as VX agent or sarin. However, the reaction mechanism of the phosphatase mimetic activity of CeO2 nanoparticles is not fully described. Adsorption, surface-promoted hydrolysis, and desorption cycles strongly depend on the physico-chemical characteristics of the facets. In this study, CeO2 nanoparticles with different shapes were elaborated by hydrothermal synthesis. Nano-octahedra, nanocubes, or nanorods were selectively obtained under different conditions (temperature, concentration and nature of the precursors). The degradation activity according to the crystal faces was evaluated in vitro by measuring the degradation kinetics of paraoxon organophosphate in the presence of CeO2 nanoparticles. The results show an influence of both specific surface area and crystal faces of the nanoparticles, with higher activity for {111} facets compared to {100} facets at 32 °C. The relative activity between the facets is ascribed to the adsorption probability, assuming coordination between the phosphoryl oxygen and cerium atoms, but also to the surface density of the Ce doublets with relevant spacing for phosphatase mimetic activity.

4.
Anal Chem ; 90(14): 8567-8575, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29902917

RESUMO

In this work, we demonstrate the feasibility of gold bipyramidal-shaped nanoparticles (AuBPs) to be used as active plasmonic nanoplatforms for the detection of the biotin-streptavidin interaction in aqueous solution via both Localized Surface Plasmon Resonance and Surface Enhanced Raman Scattering (LSPR/SERS). Our proof of concept exploits the precise attachment of the recognition element at the tips of AuBPs, where the electromagnetic field is stronger, which is beneficial to the surface sensitivity of longitudinal LSPR on the local refractive index and to the electromagnetic enhancement of SERS activity, too. Indeed, successive red shifts of the longitudinal LSPR associated with increased local refractive index reveal the attachment of para-aminothiophenol (p-ATP) chemically labeled Biotin to the Au surface and the specific capture of the target protein by biotin-functionalized AuBPs. Finite-Difference Time-Domain simulations based on the reconstructed index of refraction confirm LSPR measurements. However, the molecular identification of the biotin-streptavidin interaction remains elusive by LSPR investigation alone. Remarkably, we succeeded to complement the LSPR detection with reliable SERS measurements which permitted to (a) certify the molecular identification of biotin-streptavidin interaction and (b) extend the limit of detection of streptavidin in solution toward 10-12 M. Finally, to further probe the possibility to implement the AuBPs as dual LSPR-SERS based immunoassays in solution for real clinical diagnostics, we additionally investigated the AuBP's performance to transduce the specific antihuman IgG- human IgG binding event, providing thus a reference design for building unique plasmonic immunoassays for dual-optical detection of target proteins in aqueous solution.


Assuntos
Técnicas Biossensoriais/instrumentação , Ouro/química , Imunoensaio/instrumentação , Imunoglobulina G/análise , Análise Espectral Raman/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Biotina/química , Humanos , Estreptavidina/química
5.
Langmuir ; 30(34): 10487-92, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25105229

RESUMO

WO3 nanorods and wires were obtained via hydrothermal synthesis using sodium tungstate as a precursor and either oxalic acid, citric acid, or poly(methacrylic acid) as a stabilizing agent. Transmission electron microscopy images showed that the organic acids with different numbers of carboxylic groups per molecule influence the final sizes and stacking nanostructures of WO3 wires. Three-dimensional electron diffraction tomography of a single nanocrystal revealed a hexagonal WO3 structure with preferential growth along the c-axis, which was confirmed by high-resolution transmission electron microscopy. WO3 nanowires were also spin-coated onto an indium tin oxide/glass conducting substrate, resulting in the formation of a film that was characterized by scanning electron microscopy. Finally, cyclic voltammetry measurements performed on the WO3 thin film showed voltammograms typical for the WO3 redox process.

6.
Phys Chem Chem Phys ; 16(3): 963-73, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24281437

RESUMO

Pulsed laser ablation has proved its reliability for the synthesis of nano-particles and nano-structured materials, including metastable phases and complex stoichiometries. The possible nucleation of the nanoparticles in the gas phase and their growth has been little investigated, due to the difficulty of following the gas composition as well as the thermodynamic parameters. We show that such information can be obtained from the optically active plasma during its short lifetime, only a few microseconds for each laser pulse, as a result of a quick quenching due to the liquid environment. For this purpose, we follow the laser ablation of an α-Al2O3 target (corindon) in water, which leads to the synthesis of nanoparticles of γ-Al2O3. The AlO blue-green emission and the Al(I) (2)P(0)-(2)S doublet emission provide the electron density, the density ratio between the Al atoms and AlO molecules, and the rotational and vibrational temperatures of the AlO molecules. These diagnostic considerations are discussed in the framework of theoretical studies from the literature (density functional theory). We have found that starting from a hot atomized gas, the nucleation cannot occur in the first microseconds. We also raise the question of the influence of water on the control of the stoichiometry.

7.
Nanoscale ; 16(6): 2931-2944, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38230699

RESUMO

X-Ray imaging techniques are among the most widely used modalities in medical imaging and their constant evolution has led to the emergence of new technologies. The new generation of computed tomography (CT) systems - spectral photonic counting CT (SPCCT) and X-ray luminescence optical imaging - are examples of such powerful techniques. With these new technologies the rising demand for new contrast agents has led to extensive research in the field of nanoparticles and the possibility to merge the modalities appears to be highly attractive. In this work, we propose the design of lanthanide-based nanocrystals as a multimodal contrast agent with the two aforementioned technologies, allowing SPCCT and optical imaging at the same time. We present a systematic study on the effect of the Tb3+ doping level and surface modification on the generation of contrast with SPCCT and the luminescence properties of GdF3:Tb3+ nanocrystals (NCs), comparing different surface grafting with organic ligands and coatings with silica to make these NCs bio-compatible. A comparison of the luminescence properties of these NCs with UV revealed that the best results were obtained for the Gd0.9Tb0.1F3 composition. This property was confirmed under X-ray excitation in microCT and with SPCCT. Moreover, we could demonstrate that the intensity of the luminescence and the excited state lifetime are strongly affected by the surface modification. Furthermore, whatever the chemical nature of the ligand, the contrast with SPCCT did not change. Finally, the successful proof of concept of multimodal imaging was performed in vivo with nude mice in the SPCCT taking advantage of the so-called color K-edge imaging method.


Assuntos
Meios de Contraste , Tomografia Computadorizada por Raios X , Camundongos , Animais , Tomografia Computadorizada por Raios X/métodos , Raios X , Luminescência , Camundongos Nus , Imagens de Fantasmas
8.
Langmuir ; 29(34): 10915-21, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23886357

RESUMO

Light-matter interactions are of great interest for potential biological applications (bioimaging, biosensing, phototherapy). For such applications, sharp nanostructures exhibit interesting features since their extinction bands (surface plasmon resonance) cover a large bandwidth in the whole visible wavelength region due to the existence of "hot spots" located at the end of the tips. In this context, gold nanostars appear to be interesting objects. However, their study remains difficult, mainly due to complicated synthetic methods and further functionalization. This paper reports the synthesis, functionalization, and photophysics of luminescent hybrid gold nanostars prepared using a layer-by-layer (LbL) deposition method for the tuning of chromophore-to-particle distances together with the impact of the spectral overlap between the plasmon and the emission/absorption of the dyes. Several luminescent dyes with different optical signatures were selectively adsorbed at the nanoparticle surface. The optimized systems, exhibiting the highest luminescence recovery, clearly showed that overlap must be as low as possible. Also, the fluorescence intensities were quenched in close vicinity of the metal surface and revealed a distance-dependence with almost full recovery of the dyes emission for 11 LbL layers, which corresponded to 15 nm distances evaluated on dried samples. The photophysics of the luminescent core-shell particles were carried out in suspension and correlated with the response of isolated single objects.


Assuntos
Corantes/química , Ouro/química , Nanopartículas Metálicas/química
9.
Diagn Interv Imaging ; 104(10): 490-499, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37248095

RESUMO

PURPOSE: The purpose of this study was to investigate the feasibility of gadolinium-K-edge-angiography (angio-Gd-K-edge) with gadolinium-based contrast agents (GBCAs) as obtained with spectral photon counting CT (SPCCT) in atherosclerotic rabbits. MATERIALS AND METHODS: Seven atherosclerotic rabbits underwent angio-SPCCT acquisitions with two GBCAs, with similar intravenous injection protocol. Conventional and angio-Gd-K-edge images were reconstructed with the same parameters. Regions of interest were traced in different locations of the aorta and its branches. Hounsfield unit values, Gd concentrations, signal-to-noise (SNR) and contrast-to-noise (CNR) were calculated and compared. The maximum diameter and the diameter of the aorta in regard to atherosclerotic plaques were measured by two observers. Images were subjectively evaluated regarding vessels' enhancement, artefacts, border sharpness and overall image quality. RESULTS: In the analyzable six rabbits, Gd-K-edge allowed visualization of target vessels and no other structures. HU values and Gd concentrations were greatest in the largest artery (descending aorta, 5.6 ± 0.8 [SD] mm), and lowest in the smallest (renal arteries, 2.1 ± 0.3 mm). While greater for conventional images, CNR and SNR were satisfactory for both images (all P < 0.001). For one observer there were no statistically significant differences in either maximum or plaque-diameters (P = 0.45 and all P > 0.05 in post-hoc analysis, respectively). For the second observer, there were no significant differences for images reconstructed with the same parameters (all P < 0.05). All subjective criteria scored higher for conventional images compared to K-edge (all P < 0.01), with the highest scores for enhancement (4.3-4.4 vs. 3.1-3.4). CONCLUSION: With SPCCT, angio-Gd-K-edge after injection of GBCAs in atherosclerotic rabbits is feasible and allows for angiography-like visualization of small arteries and for the reliable measurement of their diameters.


Assuntos
Gadolínio , Tomografia Computadorizada por Raios X , Animais , Coelhos , Tomografia Computadorizada por Raios X/métodos , Angiografia , Meios de Contraste , Abdome
10.
Nanotechnology ; 23(14): 145707, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22433232

RESUMO

A great number of works focus their interest on the study of gold nanoparticle plasmonic properties. Among those, sharp nanostructures appear to exhibit the more interesting features for further developments. In this paper, a complete study on bipyramidal-like gold nanostructures is presented. The nano-objects are prepared in high yield using an original method. This chemical process enables a precise control of the shape and the size of the particles. The specific photophysical properties of gold bipyramids in suspension are ripened by recording the plasmonic response of single and isolated objects. Resulting extinction spectra are precisely correlated to their geometrical structure by mean of electron tomography at the single-particle level. The interplay between the geometrical structure and the optical properties of twisted gold bipyramids is further discussed on the basis of numerical calculations. The influence of several parameters is explored such as the structural aspect ratio or the tip truncation. In the case of an incident excitation polarized along the particle long axis, this study shows how the plasmon resonance position can be sensitive to these parameters and how it can then be efficiently tuned on a large wavelength range.


Assuntos
Tomografia com Microscopia Eletrônica , Ouro/química , Nanoestruturas/química , Ressonância de Plasmônio de Superfície/métodos , Nanotecnologia/métodos , Tamanho da Partícula
11.
Nanotechnology ; 23(46): 465602, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23095344

RESUMO

A great number of works have focused their research on the synthesis, design and optical properties of gold nanoparticles for potential biological applications (bioimaging, biosensing). For this kind of application, sharp gold nanostructures appear to exhibit the more interesting features since their surface plasmon bands are very sensitive to the surrounding medium. In this paper, a complete study of PEGylated gold nanostars and PEGylated bipyramidal-like nanostructures is presented. The nanoparticles are prepared in high yield and their surfaces are covered with a biocompatible polymer. The photophysical properties of gold bipyramids and nanostars, in suspension, are correlated with the optical response of single and isolated objects. The resulting spectra of isolated gold nanoparticles are subsequently correlated to their geometrical structure by transmission electron microscopy. Finally, the PEGylated gold nanoparticles were incubated with melanoma B16-F10 cells. Dark-field microscopy showed that the biocompatible gold nanoparticles were easily internalized and most of them localized within the cells.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Animais , Linhagem Celular Tumoral , Cetrimônio , Compostos de Cetrimônio/química , Endocitose , Ouro/farmacocinética , Histocitoquímica , Teste de Materiais , Camundongos , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Polietilenoglicóis/química , Compostos de Amônio Quaternário/química , Espectrofotometria Ultravioleta , Tensoativos/química
12.
Nanomedicine (Lond) ; 17(29): 2173-2187, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36927004

RESUMO

Aim: To propose a new multimodal imaging agent targeting amyloid-ß (Aß) plaques in Alzheimer's disease. Materials & methods: A new generation of hybrid contrast agents, based on gadolinium fluoride nanoparticles grafted with a pentameric luminescent-conjugated polythiophene, was designed, extensively characterized and evaluated in animal models of Alzheimer's disease through MRI, two-photon microscopy and synchrotron x-ray phase-contrast imaging. Results & conclusion: Two different grafting densities of luminescent-conjugated polythiophene were achieved while preserving colloidal stability and fluorescent properties, and without affecting biodistribution. In vivo brain uptake was dependent on the blood-brain barrier status. Nevertheless, multimodal imaging showed successful Aß targeting in both transgenic mice and Aß fibril-injected rats.


The design and study of a new contrast agent targeting amyloid-ß (Aß) plaques in Alzheimer's disease (AD) is proposed. Aß plaques are the earliest pathological sign of AD, silently appearing in the brain decades before the symptoms of the disease are manifested. While current detection of Aß plaques is based on nuclear medicine (a technique using a radioactive agent), a different kind of contrast agent is here evaluated in animal models of AD. The contrast agent consists of a nanoparticle made of gadolinium and fluorine ions (core), and decorated with a molecule previously shown to bind to Aß plaques (grafting). The core is detectable with MRI and x-ray imaging, while the grafting molecule is detectable with fluorescence imaging, thus allowing different imaging methods to be combined to study the pathology. In this work, the structure, stability and properties of the contrast agent have been verified in vitro (in tubes and on brain sections). Then the ability of the contrast agent to bind to Aß plaques and provide a detectable signal in MRI, x-ray or fluorescence imaging has been demonstrated in vivo (in rodent models of AD). This interdisciplinary research establishes the proof of concept that this new class of versatile agent contrast can be used to target pathological processes in the brain.


Assuntos
Doença de Alzheimer , Nanopartículas , Camundongos , Ratos , Animais , Doença de Alzheimer/diagnóstico por imagem , Distribuição Tecidual , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imagem Multimodal , Modelos Animais de Doenças
13.
Langmuir ; 27(9): 5555-61, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21469685

RESUMO

Crystalline rare earth fluoride nanoparticles were synthesized by reacting rare earth ions with charge-transfer complexes, in solution, under mild conditions. An infrared study showed that these intermediate complexes are made up of solvent molecules (amide: N,N-dimethylformamide, 1-methyl-2-pyrrolidinone, etc.) and fluoride ions coming from hydrofluoric acid. The size and shape of the particles can be controlled through the process parameters. The complete study of the particles obtained through this process is carried out in this document, especially for the YbF(3) system. However, the process can easily be extended to the whole series of rare earth elements. We also show the ability of these objects to be transferred from an aqueous medium to an organic phase thanks to their surface modification. Finally, transparent monolithic xerogels of rare earth fluoride have been developed starting from the prepared colloidal solutions.

14.
Nanoscale ; 13(6): 3767-3781, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33555278

RESUMO

Neuroinflammation is a process common to several brain pathologies. Despites its medical relevance, it still remains poorly understood; there is therefore a need to develop new in vivo preclinical imaging strategies to monitor inflammatory processes longitudinally. We here present the development of a hybrid imaging nanoprobe named NP3, that was specifically designed to get internalized by phagocytic cells and imaged in vivo with MRI and bi-photon microscopy. NP3 is composed of a 16 nm core of gadolinium fluoride (GdF3), coated with bisphosphonate polyethylene glycol (PEG) and functionalized with a Lemke-type fluorophore. It has a hydrodynamic diameter of 28 ± 8 nm and a zeta potential of -42 ± 6 mV. The MR relaxivity ratio at 7 T is r1/r2 = 20; therefore, NP3 is well suited as a T2/T2* contrast agent. In vitro cytotoxicity assessments performed on four human cell lines revealed no toxic effects of NP3. In addition, NP3 is internalized by macrophages in vitro without inducing inflammation or cytotoxicity. In vivo, uptake of NP3 has been observed in the spleen and the liver. NP3 has a prolonged vascular remanence, which is an advantage for macrophage uptake in vivo. The proof-of-concept that NP3 may be used as a contrast agent targeting phagocytic cells is provided in an animal model of ischemic stroke in transgenic CX3CR1-GFP/+ mice using three complementary imaging modalities: MRI, intravital two-photon microscopy and phase contrast imaging with synchrotron X-rays. In summary, NP3 is a promising preclinical tool for the multiscale and multimodal investigation of neuroinflammation.


Assuntos
Meios de Contraste , Gadolínio , Animais , Imageamento por Ressonância Magnética , Imagem Multimodal , Polietilenoglicóis
15.
Adv Sci (Weinh) ; 7(20): 2001675, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33101867

RESUMO

To improve the prognosis of glioblastoma, innovative radiotherapy regimens are required to augment the effect of tolerable radiation doses while sparing surrounding tissues. In this context, nanoscintillators are emerging radiotherapeutics that down-convert X-rays into photons with energies ranging from UV to near-infrared. During radiotherapy, these scintillating properties amplify radiation-induced damage by UV-C emission or photodynamic effects. Additionally, nanoscintillators that contain high-Z elements are likely to induce another, currently unexplored effect: radiation dose-enhancement. This phenomenon stems from a higher photoelectric absorption of orthovoltage X-rays by high-Z elements compared to tissues, resulting in increased production of tissue-damaging photo- and Auger electrons. In this study, Geant4 simulations reveal that rare-earth composite LaF3:Ce nanoscintillators effectively generate photo- and Auger-electrons upon orthovoltage X-rays. 3D spatially resolved X-ray fluorescence microtomography shows that LaF3:Ce highly concentrates in microtumors and enhances radiotherapy in an X-ray energy-dependent manner. In an aggressive syngeneic model of orthotopic glioblastoma, intracerebral injection of LaF3:Ce is well tolerated and achieves complete tumor remission in 15% of the subjects receiving monochromatic synchrotron radiotherapy. This study provides unequivocal evidence for radiation dose-enhancement by nanoscintillators, eliciting a prominent radiotherapeutic effect. Altogether, nanoscintillators have invaluable properties for enhancing the focal damage of radiotherapy in glioblastoma and other radioresistant cancers.

16.
Sci Rep ; 9(1): 12090, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31431689

RESUMO

Computed tomography (CT) is a widely used imaging modality. Among the recent technical improvements to increase the range of detection for optimized diagnostic, new devices such as dual energy CT allow elemental discrimination but still remain limited to two energies. Spectral photon-counting CT (SPCCT) is an emerging X-ray imaging technology with a completely new multiple energy detection and high spatial resolution (200 µm). This unique technique allows detection and quantification of a given element thanks to an element-specific increase in X-ray absorption for an energy (K-band) depending on its atomic number. The main contrast media used hitherto are iodine-based compounds but the K-edge of iodine (33.2 keV) is out of the range of detection. Therefore, it is crucial to develop contrast media suitable for this advanced technology. Gadolinium, well known and used element for MRI, possess a K-edge (50.2 keV) well suited for the SPCCT modality. The use of nano-objects instead of molecular entities is pushed by the necessity of high local concentration. In this work, nano-GdF3 is validated on a clinical based prototype, to be used as efficient in vivo contrast media. Beside an extremely high stability, it presents long lasting time in the blood pool allowing perfusion imaging of small animals, without apparent toxicity.


Assuntos
Meios de Contraste/farmacologia , Nanopartículas/química , Tomografia Computadorizada por Raios X/métodos , Animais , Meios de Contraste/química , Fator 3 de Diferenciação de Crescimento/farmacologia , Humanos , Iodo/química , Iodo/farmacologia , Imageamento por Ressonância Magnética , Camundongos , Imagens de Fantasmas , Fótons/uso terapêutico
17.
ACS Appl Mater Interfaces ; 10(38): 32304-32312, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30180538

RESUMO

The intrinsic properties of silica aerogels make them well suited for applications requiring high surface area. Therefore, the dispersion of functional nanoparticles (NPs) in these highly porous structures gives access to materials for wide range of applications such as catalysis, energy storage or sensing. The last one is particularly interesting if such composites possess good optical quality. Herein, the synthesis of monolithic and transparent silica aerogels highly loaded with Y3Al5O12:Ce nanocrystals (NCs) (up to 50 wt %) is reported. The developed composite aerogels can be impregnated with liquids, contrary to most of existing aerogels, which crack because of the strong capillary forces. Therefore, this system is designed as a novel concept of 3D porous scintillator, using the efficient photoluminescent and scintillating properties of Y3Al5O12:Ce. The investigated fluid containing low-energetic ionizing radiation emitters impregnates the material, which assures the efficient harvesting of radiation because of highly developed surface area. Such composites prove to be efficient new-type detectors of low-energy beta radiation both in liquids and gases.

18.
ACS Appl Bio Mater ; 1(2): 462-472, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35016367

RESUMO

Real time in vivo detection of Amyloid ß (Aß) deposits at an early stage may lead to faster and more conclusive diagnosis of Alzheimer's disease (AD) and can facilitate the follow up of the effect of therapeutic interventions. In this work, the capability of new hybrid nanomaterials to target and detect Aß aggregates using magnetic resonance (MRI) and fluorescence imaging is demonstrated. These smart contrast agents contain paramagnetic nanoparticles surrounded by luminescent conjugated oligothiophenes (LCOs) known to selectively bind to Aß aggregates, with emission spectra strongly dependent on their conformations, opening the possibilities for several fluorescence imaging modes for AD diagnostics. Relaxivity is evaluated in vitro and ex vivo. The capability of these contrast media to link to Aß fibrils in stained sections is revealed using transmission electron microscopy and fluorescence microscopy. Preliminary in vivo experiments show the ability of the contrast agent to diffuse through the blood-brain barrier of model animals and specifically stain amyloid deposits.

19.
Nat Commun ; 8: 15636, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28548100

RESUMO

High-performance Li-ion batteries require materials with well-designed and controlled structures on nanometre and micrometre scales. Electrochemical properties can be enhanced by reducing crystallite size and by manipulating structure and morphology. Here we show a method for preparing hierarchically structured Li4Ti5O12 yielding nano- and microstructure well-suited for use in lithium-ion batteries. Scalable glycothermal synthesis yields well-crystallized primary 4-8 nm nanoparticles, assembled into porous secondary particles. X-ray photoelectron spectroscopy reveals presence of Ti+4 only; combined with chemical analysis showing lithium deficiency, this suggests oxygen non-stoichiometry. Electron microscopy confirms hierarchical morphology of the obtained material. Extended cycling tests in half cells demonstrates capacity of 170 mAh g-1 and no sign of capacity fading after 1,000 cycles at 50C rate (charging completed in 72 s). The particular combination of nanostructure, microstructure and non-stoichiometry for the prepared lithium titanate is believed to underlie the observed electrochemical performance of material.

20.
J Colloid Interface Sci ; 447: 97-106, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25702866

RESUMO

Novel synthetic approaches for the development of multimodal imaging agents with high chemical stability are demonstrated. The magnetic cores are based on La0.63Sr0.37MnO3 manganite prepared as individual grains using a flux method followed by additional thermal treatment in a protective silica shell allowing to enhance their magnetic properties. The cores are then isolated and covered de novo with a hybrid silica layer formed through the hydrolysis and polycondensation of tetraethoxysilane and a fluorescent silane synthesized from rhodamine, piperazine spacer, and 3-iodopropyltrimethoxysilane. The aminoalkyltrialkoxysilanes are strictly avoided and the resulting particles are hydrolytically stable and do not release dye. The high colloidal stability of the material and the long durability of the fluorescence are reinforced by an additional silica layer on the surface of the particles. Structural and magnetic studies of the products using XRD, TEM, and SQUID magnetometry confirm the importance of the thermal treatment and demonstrate that no mechanical treatment is required for the flux-synthesized manganite. Detailed cell viability tests show negligible or very low toxicity at concentrations at which excellent labeling is achieved. Predominant localization of nanoparticles in lysosomes is confirmed by immunofluorescence staining. Relaxometric and biological studies suggest that the functionalized nanoparticles are suitable for imaging applications.


Assuntos
Lantânio/química , Nanopartículas de Magnetita/química , Compostos de Manganês/química , Dióxido de Silício/química , Estrôncio/química , Anticorpos Monoclonais/imunologia , Sobrevivência Celular , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Citometria de Fluxo , Fluorescência , Imunofluorescência , Células HeLa , Humanos , Células Jurkat , Proteínas de Membrana Lisossomal/imunologia , Proteínas de Membrana Lisossomal/metabolismo , Imageamento por Ressonância Magnética , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Silanos/química , Pele/citologia , Pele/metabolismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa