Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 33(4): 1615-30, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23345234

RESUMO

Serotonin (5-hydroxytryptamine; 5-HT) signaling through the 5-HT(2C) receptor (5-HT(2C)R) is essential in normal physiology, whereas aberrant 5-HT(2C)R function is thought to contribute to the pathogenesis of multiple neural disorders. The 5-HT(2C)R interacts with specific protein partners, but the impact of such interactions on 5-HT(2C)R function is poorly understood. Here, we report convergent cellular and behavioral data that the interaction between the 5-HT(2C)R and protein phosphatase and tensin homolog (PTEN) serves as a regulatory mechanism to control 5-HT(2C)R-mediated biology but not that of the closely homologous 5-HT(2A)R. A peptide derived from the third intracellular loop of the human 5-HT(2C)R [3L4F (third loop, fourth fragment)] disrupted the association, allosterically augmented 5-HT(2C)R-mediated signaling in live cells, and acted as a positive allosteric modulator in rats in vivo. We identified the critical residues within an 8 aa fragment of the 3L4F peptide that maintained efficacy (within the picomolar range) in live cells similar to that of the 3L4F peptide. Last, molecular modeling identified key structural features and potential interaction sites of the active 3L4F peptides against PTEN. These compelling data demonstrate the specificity and importance of this protein assembly in cellular events and behaviors mediated by 5-HT(2C)R signaling and provide a chemical guidepost to the future development of drug-like peptide or small-molecule inhibitors as neuroprobes to study 5-HT(2C)R allostery and therapeutics for 5-HT(2C)R-mediated disorders.


Assuntos
Modelos Moleculares , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/metabolismo , Receptor 5-HT2C de Serotonina/química , Receptor 5-HT2C de Serotonina/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Humanos , Immunoblotting , Imunoprecipitação , Masculino , Dados de Sequência Molecular , Atividade Motora/fisiologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Transfecção
2.
PLoS One ; 8(9): e75395, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24058683

RESUMO

The lactonase enzyme (AiiA) produced by Bacillus thuringiensis serves to degrade autoinducer-1 (AI-1) signaling molecules in what is an evolved mechanism by which to compete with other bacteria. Bioassays have been previously performed to determine whether the AI-1 aliphatic tail lengths have any effect on AiiA's bioactivity, however, data to date are conflicting. Additionally, specific residue contributions to the catalytic activity of AiiA provide for some interesting questions. For example, it has been proposed that Y194 serves to provide an oxyanion hole to AI-1 which is curious given the fact the substrate spans two Zn(2+) ions. These ions might conceivably provide enough charge to promote both ligand stability and the carbonyl activation necessary to drive a nucleophilic attack. To investigate these questions, multiple molecular dynamics simulations were performed across a family of seven acylated homoserine lactones (AHL) along with their associated intermediate and product states. Distance analyses and interaction energy analyses were performed to investigate current bioassay data. Our simulations are consistent with experimental studies showing that AiiA degrades AHLs in a tail length independent manner. However, the presence of the tail is required for activity. Also, the putative oxyanion hole function of Y194 toward the substrate is not observed in any of the reactant or product state simulation trajectories, but does seem to show efficacy in stabilizing the intermediate state. Last, we argue through ionization state analyses, that the proton shuttling necessary for catalytic activity might be mediated by both water and substrate-based intra-molecular proton transfer. Based on this argument, an alternate catalytic mechanism is proposed.


Assuntos
Bacillus thuringiensis/enzimologia , Proteínas de Bactérias/química , Metaloendopeptidases/química , Simulação de Dinâmica Molecular , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Domínio Catalítico , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Estrutura Secundária de Proteína
3.
J Mol Graph Model ; 46: 74-82, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24149321

RESUMO

Rho-associated kinase, or ROCK, is an important mediator of ventricular remodeling in cardiac hypertrophy. It has a kinase catalytic domain, a coiled-coil domain and a Pleckstrin-Homology domain (PH domain) with a C1 domain insert. The C-terminal region including the PH domain and C1 domain insert is involved in an autoregulatory role for ROCK. We sought to evaluate whether a self association complex could form using computational docking approaches. We found that both the PH domain and the C1 domain could dock with the catalytic domain and we further found that they could dock in poses that are complementary to each other forming a three domain complex. We also confirmed a binding response using a surface plasmon resonance experimental approach. Information about the regulation of ROCK might lead to new strategies to develop lead inhibitor compounds to modulate cardiac remodeling.


Assuntos
Simulação de Acoplamento Molecular , Quinases Associadas a rho/química , Sequência de Aminoácidos , Domínio Catalítico , Sequência Conservada , Humanos , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa