Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nat Immunol ; 24(2): 239-254, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36604547

RESUMO

Metastasis is the leading cause of cancer-related deaths and myeloid cells are critical in the metastatic microenvironment. Here, we explore the implications of reprogramming pre-metastatic niche myeloid cells by inducing trained immunity with whole beta-glucan particle (WGP). WGP-trained macrophages had increased responsiveness not only to lipopolysaccharide but also to tumor-derived factors. WGP in vivo treatment led to a trained immunity phenotype in lung interstitial macrophages, resulting in inhibition of tumor metastasis and survival prolongation in multiple mouse models of metastasis. WGP-induced trained immunity is mediated by the metabolite sphingosine-1-phosphate. Adoptive transfer of WGP-trained bone marrow-derived macrophages reduced tumor lung metastasis. Blockade of sphingosine-1-phosphate synthesis and mitochondrial fission abrogated WGP-induced trained immunity and its inhibition of lung metastases. WGP also induced trained immunity in human monocytes, resulting in antitumor activity. Our study identifies the metabolic sphingolipid-mitochondrial fission pathway for WGP-induced trained immunity and control over metastasis.


Assuntos
Neoplasias Pulmonares , beta-Glucanas , Animais , Camundongos , Humanos , Imunidade Treinada , Macrófagos , Lisofosfolipídeos/metabolismo , Monócitos , Neoplasias Pulmonares/patologia , beta-Glucanas/metabolismo , beta-Glucanas/farmacologia , Microambiente Tumoral
2.
BMC Genomics ; 20(1): 647, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31412766

RESUMO

BACKGROUND: Despite the convergence of rapid technological advances in genomics and the maturing field of ecoimmunology, our understanding of the genes that regulate immunity in wild populations is still nascent. Previous work to assess immune function has relied upon relatively crude measures of immunocompetence. However, with next-generation RNA-sequencing, it is now possible to create a profile of gene expression in response to an immune challenge. In this study, captive zebra finch (Taeniopygia guttata; adult males) were challenged with bacterial lipopolysaccharide (LPS) or vehicle to stimulate the innate immune system. 2 hours after injection, birds were euthanized and hypothalami, spleen, and red blood cells (RBCs) were collected. Taking advantage of the fully sequenced genome of zebra finch, total RNA was isolated, sequenced, and partially annotated in these tissue/cells. RESULTS: In hypothalamus, there were 707 significantly upregulated transcripts, as well as 564 and 144 in the spleen and RBCs, respectively, relative to controls. Also, 155 transcripts in the hypothalamus, 606 in the spleen, and 61 in the RBCs were significantly downregulated. More specifically, a number of immunity-related transcripts (e.g., IL-1ß, RSAD2, SOCS3) were upregulated among tissues/cells. Additionally, transcripts involved in metabolic processes (APOD, LRAT, RBP4) were downregulated. CONCLUSIONS: These results suggest a potential trade-off in expression of genes that regulate immunity and metabolism in birds challenged with LPS. This finding is consistent with a hypothermic response to LPS treatment in small birds. Unlike mammals, birds have nucleated RBCs, and these results support a novel transcriptomic response of avian RBCs to immune challenge.


Assuntos
Tentilhões/genética , Tentilhões/imunologia , Perfilação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Animais , Eritrócitos/efeitos dos fármacos , Eritrócitos/imunologia , Eritrócitos/metabolismo , Ontologia Genética , Hipotálamo/efeitos dos fármacos , Hipotálamo/imunologia , Hipotálamo/metabolismo , Baço/efeitos dos fármacos , Baço/imunologia , Baço/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
3.
J Biomed Inform ; 54: 337-44, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25554683

RESUMO

Missing data arise in clinical research datasets for reasons ranging from incomplete electronic health records to incorrect trial data collection. This has an adverse effect on analysis performed with the data, but it can also affect the management of a clinical trial itself. We propose two graphical visualization schemes to aid in managing the completeness of a clinical research dataset: the binary completeness grid (BCG) for single patient observation, and the gradient completeness grid (GCG) for an entire dataset. We use these tools to manage three clinical trials. Two are ongoing observational trials, while the other is a cohort study that is complete. The completeness grids revealed unexpected patterns in our data and enabled us to identify records that should have been purged and identify missing follow-up data from sets of observations thought to be complete. Binary and gradient completeness grids provide a rapid, convenient way to visualize missing data in clinical datasets.


Assuntos
Pesquisa Biomédica/métodos , Coleta de Dados/métodos , Pesquisa Biomédica/normas , Estudos Clínicos como Assunto/métodos , Estudos Clínicos como Assunto/normas , Coleta de Dados/normas , Registros Eletrônicos de Saúde , Humanos
4.
Adv Health Sci Educ Theory Pract ; 19(4): 507-28, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24449123

RESUMO

Instruction of neuroanatomy depends on graphical representation and extended self-study. As a consequence, computer-based learning environments that incorporate interactive graphics should facilitate instruction in this area. The present study evaluated such a system in the undergraduate neuroscience classroom. The system used the method of adaptive exploration, in which exploration in a high fidelity graphical environment is integrated with immediate testing and feedback in repeated cycles of learning. The results of this study were that students considered the graphical learning environment to be superior to typical classroom materials used for learning neuroanatomy. Students managed the frequency and duration of study, test, and feedback in an efficient and adaptive manner. For example, the number of tests taken before reaching a minimum test performance of 90 % correct closely approximated the values seen in more regimented experimental studies. There was a wide range of student opinion regarding the choice between a simpler and a more graphically compelling program for learning sectional anatomy. Course outcomes were predicted by individual differences in the use of the software that reflected general work habits of the students, such as the amount of time committed to testing. The results of this introduction into the classroom are highly encouraging for development of computer-based instruction in biomedical disciplines.


Assuntos
Gráficos por Computador , Instrução por Computador/métodos , Currículo/tendências , Internet , Neuroanatomia/educação , Previsões , Humanos , Desenvolvimento de Programas , Avaliação de Programas e Projetos de Saúde , Fatores de Tempo
5.
medRxiv ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39185521

RESUMO

Background: Multiple Sclerosis (MS) is an autoimmune neurodegenerative disease affecting approximately 3 million people globally. Despite rigorous research on MS, aspects of its development and progression remain unclear. Understanding molecular mechanisms underlying MS is crucial to providing insights into disease pathways, identifying potential biomarkers for early diagnosis, and revealing novel therapeutic targets for improved patient outcomes. Methods: We utilized publicly available RNA-seq data (GSE138614) from post-mortem white matter tissues of five donors without any neurological disorder and ten MS patient donors. This data was interrogated for differential gene expression, alternative splicing and single nucleotide variants as well as for functional enrichments in the resulting datasets. Results: A comparison of non-MS white matter (WM) to MS samples yielded differentially expressed genes involved in adaptive immune response, cell communication, and developmental processes. Genes with expression changes positively correlated with tissue inflammation were enriched in the immune system and receptor interaction pathways. Negatively correlated genes were enriched in neurogenesis, nervous system development, and metabolic pathways. Alternatively spliced transcripts between WM and MS lesions included genes that play roles in neurogenesis, myelination, and oligodendrocyte differentiation, such as brain enriched myelin associated protein (BCAS1), discs large MAGUK scaffold protein 1 (DLG1), KH domain containing RNA binding (QKI), and myelin basic protein (MBP). Our approach to comparing normal appearing WM (NAWM) and active lesion (AL) from one donor and NAWM and chronic active (CA) tissues from two donors, showed that different IgH and IgK gene subfamilies were differentially expressed. We also identified pathways involved in white matter injury repair and remyelination in these tissues. Differentially spliced genes between these lesions were involved in axon and dendrite structure stability. We also identified exon skipping events and spontaneous single nucleotide polymorphisms in membrane associated ring-CH-type finger 1 (MARCHF1), UDP glycosyltransferase 8 (UGT8), and other genes important in autoimmunity and neurodegeneration. Conclusion: Overall, we identified unique genes, pathways, and novel splicing events affecting disease progression that can be further investigated as potential novel drug targets for MS treatment.

6.
Environ Health Perspect ; 132(4): 47007, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619879

RESUMO

BACKGROUND: Environmental pollutants, including polychlorinated biphenyls (PCBs) have been implicated in the pathogenesis of liver disease. Our group recently demonstrated that PCB126 promoted steatosis, hepatomegaly, and modulated intermediary metabolism in a rodent model of alcohol-associated liver disease (ALD). OBJECTIVE: To better understand how PCB126 promoted ALD in our previous model, the current study adopts multiple omics approaches to elucidate potential mechanistic hypotheses. METHODS: Briefly, male C57BL/6J mice were exposed to 0.2mg/kg polychlorinated biphenyl (PCB) 126 or corn oil vehicle prior to ethanol (EtOH) or control diet feeding in the chronic-binge alcohol feeding model. Liver tissues were collected and prepared for mRNA sequencing, phosphoproteomics, and inductively coupled plasma mass spectrometry for metals quantification. RESULTS: Principal component analysis showed that PCB126 uniquely modified the transcriptome in EtOH-fed mice. EtOH feeding alone resulted in >4,000 differentially expressed genes (DEGs), and PCB126 exposure resulted in more DEGs in the EtOH-fed group (907 DEGs) in comparison with the pair-fed group (503 DEGs). Top 20 significant gene ontology (GO) biological processes included "peptidyl tyrosine modifications," whereas top 25 significantly decreasing GO molecular functions included "metal/ion/zinc binding." Quantitative, label-free phosphoproteomics and western blot analysis revealed no major significant PCB126 effects on total phosphorylated tyrosine residues in EtOH-fed mice. Quantified hepatic essential metal levels were primarily significantly lower in EtOH-fed mice. PCB126-exposed mice had significantly lower magnesium, cobalt, and zinc levels in EtOH-fed mice. DISCUSSION: Previous work has demonstrated that PCB126 is a modifying factor in metabolic dysfunction-associated steatotic liver disease (MASLD), and our current work suggests that pollutants also modify ALD. PCB126 may, in part, be contributing to the malnutrition aspect of ALD, where metal deficiency is known to contribute and worsen prognosis. https://doi.org/10.1289/EHP14132.


Assuntos
Poluentes Ambientais , Fígado Gorduroso , Hepatopatias Alcoólicas , Bifenilos Policlorados , Masculino , Camundongos , Animais , Multiômica , Camundongos Endogâmicos C57BL , Etanol/toxicidade , Etanol/metabolismo , Fígado/metabolismo , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/metabolismo , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Poluentes Ambientais/toxicidade , Poluentes Ambientais/metabolismo , Zinco/metabolismo , Tirosina/metabolismo
7.
Commun Med (Lond) ; 4(1): 70, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594350

RESUMO

BACKGROUND: Despite wide scale assessments, it remains unclear how large-scale severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination affected the wastewater concentration of the virus or the overall disease burden as measured by hospitalization rates. METHODS: We used weekly SARS-CoV-2 wastewater concentration with a stratified random sampling of seroprevalence, and linked vaccination and hospitalization data, from April 2021-August 2021 in Jefferson County, Kentucky (USA). Our susceptible ( S ), vaccinated ( V ), variant-specific infected ( I 1 and I 2 ), recovered ( R ), and seropositive ( T ) model ( S V I 2 R T ) tracked prevalence longitudinally. This was related to wastewater concentration. RESULTS: Here we show the 64% county vaccination rate translate into about a 61% decrease in SARS-CoV-2 incidence. The estimated effect of SARS-CoV-2 Delta variant emergence is a 24-fold increase of infection counts, which correspond to an over 9-fold increase in wastewater concentration. Hospitalization burden and wastewater concentration have the strongest correlation (r = 0.95) at 1 week lag. CONCLUSIONS: Our study underscores the importance of continuing environmental surveillance post-vaccine and provides a proof-of-concept for environmental epidemiology monitoring of infectious disease for future pandemic preparedness.


It is unclear how large-scale COVID-19 vaccination impacts wastewater concentration or overall disease burden. Here, we developed a mathematical surveillance model that allows estimation of overall vaccine impact based on the amount of SARS-CoV-2 in wastewater, seroprevalence and the number of cases admitted to hospitals between April 2021­August 2021 in Jefferson County, Kentucky USA. We found that a 64% vaccination coverage correlated to a 61% decrease in COVID-19 cases. The emergence of the SARS-CoV-2 Delta variant during the time of the surveillance directly correlated with a sharp increase in infection incidence as well as viral counts in wastewater. The hospitalization burden was closely reflected by the viral count found in the wastewater, indicating that post-vaccine environmental surveillance can be an effective method of estimating changing disease prevalence in future pandemics.

8.
Front Immunol ; 15: 1316228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370409

RESUMO

Background: It is well established that females are more susceptible to the toxic effects of alcohol, although the exact mechanisms are still poorly understood. Previous studies noted that alcohol reduces the expression of mitogen-activated protein kinase phosphatase 1 (MKP1), a negative regulator of mitogen-activated protein kinases (MAPK) in the liver. However, the role of hepatocyte- specific MKP1 in the pathogenesis of alcohol-associated liver disease (ALD) remains uncharacterized. This study aimed to evaluate the role of hepatocyte-specific MKP1 in the susceptibility and sexual dimorphism in alcohol-induced liver injury. Methods: C57Bl/6 mice were used in an intragastric ethanol feeding model of alcohol-associated steatohepatitis (ASH). Hepatocyte-specific Mkp1-/- knockout and (Mkp1+/+ "f/f" male and female mice were subjected to the NIAAA chronic plus binge model. Primary mouse hepatocytes were used for in vitro studies. Liver RNA sequencing was performed on an Illumina NextSeq 500. Liver injury was evaluated by plasma alanine transaminase (ALT), hepatic ER stress and inflammation markers. Statistical analysis was carried out using ANOVA and the unpaired Student's t-test. Results: ASH was associated with the severe injury accompanied by increased endoplasmic reticulum (ER) stress and significant downregulation of Dusp1 mRNA expression. In vitro, ethanol treatment resulted in a time-dependent decrease in Dusp1 mRNA and protein expression in primary hepatocytes in both males and females; however, this effect was significantly more pronounced in hepatocytes from females. In vivo, female mice developed more liver injury in a chronic plus binge model which was accompanied by a significant decrease in liver Dusp1 mRNA expression. In comparison, liver Dusp1 was not changed in male mice, while they developed milder injury to alcohol. Mkp1 deletion in hepatocytes led to increased alcohol induced liver injury, ER stress and inflammation in both sexes. Conclusion: Hepatocyte Mkp1 plays a significant role in alcohol induced liver injury. Alcohol downregulates Mkp1 expression in hepatocytes in a sex dependent manner and could play a role in sexual dimorphism in increased female susceptibility to alcohol.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Fígado Gorduroso Alcoólico , Hepatopatias Alcoólicas , Masculino , Feminino , Camundongos , Animais , Caracteres Sexuais , Hepatócitos/metabolismo , Etanol/toxicidade , Fígado Gorduroso Alcoólico/genética , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/farmacologia
9.
Genes (Basel) ; 14(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36980918

RESUMO

G-quadruplexes (G4s) are short secondary DNA structures located throughout genomic DNA and transcribed RNA. Although G4 structures have been shown to form in vivo, no current search tools that examine these structures based on previously identified G-quadruplexes and filter them based on similar sequence, structure, and thermodynamic properties are known to exist. We present a framework for clustering G-quadruplex sequences into families using the CD-HIT, MeShClust, and DNACLUST methods along with a combination of Starcode and BLAST. Utilizing this framework to filter and annotate clusters, 95 families of G-quadruplex sequences were identified within the human genome. Profiles for each family were created using hidden Markov models to allow for the identification of additional family members and generate homology probability scores. The thermodynamic folding energy properties, functional annotation of genes associated with the sequences, scores from different prediction algorithms, and transcription factor binding motifs within a family were used to annotate and compare the diversity within and across clusters. The resulting set of G-quadruplex families can be used to further understand how different regions of the genome are regulated by factors targeting specific structures common to members of a specific cluster.


Assuntos
Quadruplex G , Humanos , Genoma Humano , DNA/genética , Análise de Sequência de DNA , RNA
10.
bioRxiv ; 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36778288

RESUMO

While the role of G4 G quadruplex structures has been identified in cancers and metabolic disorders, single nucleotide variations (SNVs) and their effect on G4s in disease contexts have not been extensively studied. The COSMIC and CLINVAR databases were used to detect SNVs present in G4s to identify sequence level changes and their effect on alteration of G4 secondary structure. 37,515 G4 SNVs in the COSMIC database and 2,115 in CLINVAR were identified. Of those, 7,236 COSMIC (19.3%) and 416 (18%) of the CLINVAR variants result in G4 loss, while 2,728 (COSMIC) and 112 (CLINVAR) SNVs gain a G4 structure. The gene ontology term "GnRH (Gonadotropin-releasing hormone) secretion" is enriched in 21 genes in this pathway that have a G4 destabilizing SNV. Analysis of mutational patterns in the G4 structure show a higher selective pressure (3-fold) in the coding region on the template strand compared to the non-template strand. At the same time, an equal proportion of SNVs were observed among intronic, promoter and enhancer regions across strands. Using GO and pathway enrichment, genes with SNVs for G4 forming propensity in the coding region are enriched for Regulation of Ras protein signal transduction and Src homology 3 (SH3) domain binding.

11.
Genes (Basel) ; 14(12)2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38136947

RESUMO

While the role of G quadruplex (G4) structures has been identified in cancers and metabolic disorders, single nucleotide variations (SNVs) and their effect on G4s in disease contexts have not been extensively studied. The COSMIC and CLINVAR databases were used to detect SNVs present in G4s to identify sequence level changes and their effect on the alteration of the G4 secondary structure. A total of 37,515 G4 SNVs in the COSMIC database and 2378 in CLINVAR were identified. Of those, 7236 COSMIC (19.3%) and 457 (19%) of the CLINVAR variants result in G4 loss, while 2728 (COSMIC) and 129 (CLINVAR) SNVs gain a G4 structure. The remaining variants potentially affect the folding energy without affecting the presence of a G4. Analysis of mutational patterns in the G4 structure shows a higher selective pressure (3-fold) in the coding region on the template strand compared to the reverse strand. At the same time, an equal proportion of SNVs were observed among intronic, promoter, and enhancer regions across strands.


Assuntos
Quadruplex G , Nucleotídeos , Humanos , Mutação
12.
Front Cell Infect Microbiol ; 13: 1324091, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274737

RESUMO

Introduction: Acinetobacter baumannii strain 17978 is an opportunistic pathogen possessing a DNA damage response (DDR) in which multiple error-prone polymerase genes are co-repressed by a UmuD homolog, UmuDAb, and the small Acinetobacter-specific protein DdrR. Additionally, these regulators coactivate nine other genes. We identified the DNA damage-inducible transcriptome for wildtype, umuDAb, and recA strains, and later established the ddrR DDR transcriptome. However, the ATCC 17978 reference genome had several assembly errors and lacked the 44 kb virulence locus, AbaAL44, that is present in the strain 17978 UN. Methods: For this project, we combined our earlier single-end read RNAseq data with the ddrR paired-end reads and aligned these data to the improved 17978 UN genome assembly that resembled our laboratory strain, 17978 JH. Results: New DESeq2 analyses verified previous differentially expressed genes (DEGs) but also found 339 genes in 17978 JH that were not annotated or physically present in the older genome assembly. Sixty-three were differentially expressed after DNA damage, and 182 had differential basal expression when comparing umuDAb, ddrR, or recA strains to wildtype, with 94 genes' expression unchanged. This work identified and characterized the 55 gene DNA damage-repressible transcriptome, 98% of which required either umuDAb or ddrR for repression. Two-thirds of these DEGs required both regulators. We also identified 110 genes repressed only in the ddrR strain, ~50% of which were due to increased basal expression levels. Basal gene expression in the ddrR mutant was further dysregulated independent of the DDR. Over 800 genes were upregulated, and over 1200 genes were downregulated compared to wildtype expression. Half of A. baumannii's essential genes were upregulated in the ddrR strain, including cell division genes, and two-thirds of these were downregulated in the umuDAb strain. Discussion: The ddrR mutant upregulated genes enriched in translation, RNA metabolism, protein metabolism, AA/FA/cell-structure synthesis, and transport, while downregulating genes enriched in quorum sensing, biofilm production, secretion systems, pilus production, cell adhesion, and aromatics and chlorine degradation. Our data underscore the need for accurate and appropriately matched genome assemblies and indicate that ddrR affects approximately 60% of the genome, rendering it a potential target for Acinetobacter baumannii infection treatment.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Dano ao DNA , Transcriptoma , Reparo do DNA , Proteínas de Bactérias/metabolismo
13.
Res Sq ; 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37066424

RESUMO

A 44-year-old female patient with multiple sclerosis (MS) treated with ocrelizumab was hospitalized with SARS-CoV-2 pneumonia three times over the course of five months, eventually expiring. Viral sequencing of samples from her first and last admissions suggests a single persistent SARS-CoV-2 infection. We hypothesize that her immunocompromised state, due to MS treatment with an immunosuppressive monoclonal antibody, prevented her from achieving viral clearance.

14.
Res Sq ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37546871

RESUMO

Reducing the loss of oligodendrocytes (OLs) is a major goal for neuroprotection after spinal cord injury (SCI). Therefore, the OL translatome was determined in Ribotag:Plp1-CreERT2 mice at 2, 10, and 42 days after moderate contusive T9 SCI. At 2 and 42 days, mitochondrial respiration- or actin cytoskeleton/cell junction/cell adhesion mRNAs were upregulated or downregulated, respectively. The latter effect suggests myelin sheath loss/morphological simplification which is consistent with downregulation of cholesterol biosynthesis transcripts on days 10 and 42. Various regulators of pro-survival-, cell death-, and/or oxidative stress response pathways showed peak expression acutely, on day 2. Many acutely upregulated OL genes are part of the repressive SUZ12/PRC2 operon suggesting that epigenetic de-silencing contributes to SCI effects on OL gene expression. Acute OL upregulation of the iron oxidoreductase Steap3 was confirmed at the protein level and replicated in cultured OLs treated with the mitochondrial uncoupler FCCP. Hence, STEAP3 upregulation may mark mitochondrial dysfunction. Taken together, in SCI-challenged OLs, acute and subchronic enhancement of mitochondrial respiration may be driven by axonal loss and subsequent myelin sheath degeneration. Acutely, the OL switch to oxidative phosphorylation may lead to oxidative stress that is further amplified by upregulation of such enzymes as STEAP3.

15.
Sci Rep ; 13(1): 21254, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040794

RESUMO

Reducing the loss of oligodendrocytes (OLs) is a major goal for neuroprotection after spinal cord injury (SCI). Therefore, the OL translatome was determined in Ribotag:Plp1-CreERT2 mice at 2, 10, and 42 days after moderate contusive T9 SCI. At 2 and 42 days, mitochondrial respiration- or actin cytoskeleton/cell junction/cell adhesion mRNAs were upregulated or downregulated, respectively. The latter effect suggests myelin sheath loss/morphological simplification which is consistent with downregulation of cholesterol biosynthesis transcripts on days 10 and 42. Various regulators of pro-survival-, cell death-, and/or oxidative stress response pathways showed peak expression acutely, on day 2. Many acutely upregulated OL genes are part of the repressive SUZ12/PRC2 operon suggesting that epigenetic de-silencing contributes to SCI effects on OL gene expression. Acute OL upregulation of the iron oxidoreductase Steap3 was confirmed at the protein level and replicated in cultured OLs treated with the mitochondrial uncoupler FCCP. Hence, STEAP3 upregulation may mark mitochondrial dysfunction. Taken together, in SCI-challenged OLs, acute and subchronic enhancement of mitochondrial respiration may be driven by axonal loss and subsequent myelin sheath degeneration. Acutely, the OL switch to oxidative phosphorylation may lead to oxidative stress that is further amplified by upregulation of such enzymes as STEAP3.


Assuntos
Fosforilação Oxidativa , Traumatismos da Medula Espinal , Camundongos , Animais , Oligodendroglia/metabolismo , Bainha de Mielina/metabolismo , Epigênese Genética , Medula Espinal/metabolismo
16.
medRxiv ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36656780

RESUMO

Despite wide scale assessments, it remains unclear how large-scale SARS-CoV-2 vaccination affected the wastewater concentration of the virus or the overall disease burden as measured by hospitalization rates. We used weekly SARS-CoV-2 wastewater concentration with a stratified random sampling of seroprevalence, and linked vaccination and hospitalization data, from April 2021-August 2021 in Jefferson County, Kentucky (USA). Our susceptible (S), vaccinated (V), variant-specific infected I1 and I2, recovered (R), and seropositive (T) model SVI2RT tracked prevalence longitudinally. This was related to wastewater concentration. The 64% county vaccination rate translated into about 61% decrease in SARS-CoV-2 incidence. The estimated effect of SARS-CoV-2 Delta variant emergence was a 24-fold increase of infection counts, which corresponded to an over 9-fold increase in wastewater concentration. Hospitalization burden and wastewater concentration had the strongest correlation (r = 0.95) at 1 week lag. Our study underscores the importance of continued environmental surveillance post-vaccine and provides a proof-of-concept for environmental epidemiology monitoring of infectious disease for future pandemic preparedness.

17.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778366

RESUMO

Spinal cord injury (SCI) is a debilitating disease resulting in an estimated 18,000 new cases in the United States on an annual basis. Significant behavioral research on animal models has led to a large amount of data, some of which has been catalogued in the Open Data Commons for Spinal Cord Injury (ODC-SCI). More recently, high throughput sequencing experiments have been utilized to understand molecular mechanisms associated with SCI, with nearly 6,000 samples from over 90 studies available in the Sequence Read Archive. However, to date, no resource is available for efficiently mining high throughput sequencing data from SCI experiments. Therefore, we have developed a protocol for processing RNA-Seq samples from high-throughput sequencing experiments related to SCI resulting in both raw and normalized data that can be efficiently mined for comparisons across studies as well as homologous discovery across species. We have processed 1,196 publicly available RNA-seq samples from 50 bulk RNA-Seq studies across nine different species, resulting in an SQLite database that can be used by the SCI research community for further discovery. We provide both the database as well as a web-based front-end that can be used to query the database for genes of interest, differential gene expression, genes with high variance, and gene set enrichments.

18.
Biology (Basel) ; 12(10)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37887031

RESUMO

BACKGROUND: Cyclic nucleotides are second messengers, which play significant roles in numerous biological processes. Previous work has shown that cAMP and cGMP signaling regulates various pathways in liver cells, including Kupffer cells, hepatocytes, hepatic stellate cells, and cellular components of hepatic sinusoids. Importantly, it has been shown that cAMP levels and enzymes involved in cAMP homeostasis are affected by alcohol. Although the role of cyclic nucleotide signaling is strongly implicated in several pathological pathways in liver diseases, studies describing the changes in genes regulating cyclic nucleotide metabolism in ALD are lacking. METHODS: Male C57B/6 mice were used in an intragastric model of alcohol-associated steatohepatitis (ASH). Liver injury, inflammation, and fibrogenesis were evaluated by measuring plasma levels of injury markers, liver tissue cytokines, and gene expression analyses. Liver transcriptome analysis was performed to examine the effects of alcohol on regulators of cyclic AMP and GMP levels and signaling. cAMP and cGMP levels were measured in mouse livers as well as in livers from healthy human donors and patients with alcohol-associated hepatitis (AH). RESULTS: Our results show significant changes in several phosphodiesterases (PDEs) with specificity to degrade cAMP (Pde4a, Pde4d, and Pde8a) and cGMP (Pde5a, Pde6d, and Pde9a), as well as dual-specificity PDEs (Pde1a and Pde10a) in ASH mouse livers. Adenylyl cyclases (ACs) 7 and 9, which are responsible for cAMP generation, were also affected by alcohol. Importantly, adenosine receptor 1, which has been implicated in the pathogenesis of liver diseases, was significantly increased by alcohol. Adrenoceptors 1 and 3 (Adrb), which couple with stimulatory G protein to regulate cAMP and cGMP signaling, were significantly decreased. Additionally, beta arrestin 2, which interacts with cAMP-specific PDE4D to desensitize G-protein-coupled receptor to generate cAMP, was significantly increased by alcohol. Notably, we observed that cAMP levels are much higher than cGMP levels in the livers of humans and mice; however, alcohol affected them differently. Specifically, cGMP levels were higher in patients with AH and ASH mice livers compared with controls. As expected, these changes in liver cyclic nucleotide signaling were associated with increased inflammation, steatosis, apoptosis, and fibrogenesis. CONCLUSIONS: These data strongly implicate dysregulated cAMP and cGMP signaling in the pathogenesis of ASH. Future studies to identify changes in these regulators in a cell-specific manner could lead to the development of novel targeted therapies for ASH.

19.
J Neurotrauma ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37917105

RESUMO

Spinal cord injury (SCI) is a debilitating condition with an estimated 18,000 new cases annually in the United States. The field has accepted and adopted standardized databases such as the Open Data Commons for Spinal Cord Injury (ODC-SCI) to aid in broader analyses, but these currently lack high-throughput data despite the availability of nearly 6000 samples from over 90 studies available in the Sequence Read Archive. This limits the potential for large datasets to enhance our understanding of SCI-related mechanisms at the molecular and cellular level. Therefore, we have developed a protocol for processing RNA-Seq samples from high-throughput sequencing experiments related to SCI resulting in both raw and normalized data that can be efficiently mined for comparisons across studies, as well as homologous discovery across species. We have processed 1196 publicly available RNA-Seq samples from 50 bulk RNA-Seq studies across nine different species, resulting in an SQLite database that can be used by the SCI research community for further discovery. We provide both the database as well as a web-based front-end that can be used to query the database for genes of interest, differential gene expression, genes with high variance, and gene set enrichments.

20.
iScience ; 26(5): 106630, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37192973

RESUMO

Natural IL-17-producing γδ T cells (γδT17 cells) are unconventional innate-like T cells that undergo functional programming in the fetal thymus. However, the intrinsic metabolic mechanisms of γδT17 cell development remain undefined. Here, we demonstrate that mTORC2, not mTORC1, selectively controls the functional fate commitment of γδT17 cells through regulating transcription factor c-Maf expression. scRNA-seq data suggest that fetal and adult γδT17 cells predominately utilize mitochondrial metabolism. mTORC2 deficiency results in impaired Drp1-mediated mitochondrial fission and mitochondrial dysfunction characterized by mitochondrial membrane potential (ΔΨm) loss, reduced oxidative phosphorylation (OXPHOS), and subsequent ATP depletion. Treatment with the Drp1 inhibitor Mdivi-1 alleviates imiquimod-induced skin inflammation. Reconstitution of intracellular ATP levels by ATP-encapsulated liposome completely rescues γδT17 defect caused by mTORC2 deficiency, revealing the fundamental role of metabolite ATP in γδT17 development. These results provide an in-depth insight into the intrinsic link between the mitochondrial OXPHOS pathway and γδT17 thymic programming and functional acquisition.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa