Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(3): 1205-1212, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33492966

RESUMO

The control of domain walls is central to nearly all magnetic technologies, particularly for information storage and spintronics. Creative attempts to increase storage density need to overcome volatility due to thermal fluctuations of nanoscopic domains and heating limitations. Topological defects, such as solitons, skyrmions, and merons, may be much less susceptible to fluctuations, owing to topological constraints, while also being controllable with low current densities. Here, we present the first evidence for soliton/soliton and soliton/antisoliton domain walls in the hexagonal chiral magnet Mn1/3NbS2 that respond asymmetrically to magnetic fields and exhibit pair-annihilation. This is important because it suggests the possibility of controlling the occurrence of soliton pairs and the use of small fields or small currents to control nanoscopic magnetic domains. Specifically, our data suggest that either soliton/soliton or soliton/antisoliton pairs can be stabilized by tuning the balance between intrinsic exchange interactions and long-range magnetostatics in restricted geometries.

2.
Nano Lett ; 21(19): 8135-8142, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34529916

RESUMO

Iron and its alloys have made modern civilization possible, with metallic meteorites providing one of the human's earliest sources of usable iron as well as providing a window into our solar system's billion-year history. Here highest-resolution tools reveal the existence of a previously hidden FeNi nanophase within the extremely slowly cooled metallic meteorite NWA 6259. This new nanophase exists alongside Ni-poor and Ni-rich nanoprecipitates within a matrix of tetrataenite, the uniaxial, chemically ordered form of FeNi. The ferromagnetic nature of the nanoprecipitates combined with the antiferromagnetic character of the FeNi nanophases gives rise to a complex magnetic state that evolves dramatically with temperature. These observations extend and possibly alter our understanding of celestial metallurgy, provide new knowledge concerning the archetypal Fe-Ni phase diagram and supply new information for the development of new types of sustainable, technologically critical high-energy magnets.


Assuntos
Meteoroides , Ligas , Humanos , Ferro , Imãs , Transição de Fase
3.
Phys Chem Chem Phys ; 21(24): 13040-13046, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31168544

RESUMO

Migration of atoms in solids during diffusion-dependent reactions is relatively fast and generally not directly recordable in experiments. Here we present an experimental framework that includes fast differential scanning calorimetry to resolve cation-migration paths in crystalline solids using the reversible magneto-structural transition of 4C to 1C pyrrhotite as a testbed. The transition between these two polymorphic Fe7S8 phases at about 600 K is a diffusive process of vacancies, respectively of Fe in octahedral interstitial sites within a hexagonal close-packed lattice of sulfur, and it coincides with the Curie temperature of 4C pyrrhotite. The Fe cations migrate along three kinds of diffusion paths, and their enthalpy contributions to the total reaction enthalpy are taken to define the diffusion patterns in the endothermic reaction and the exothermic back-reaction, respectively. Our experimental findings provide insight into the potential of diffusion patterns to disentangle ordering mechanisms in solids.

4.
Angew Chem Int Ed Engl ; 58(38): 13550-13555, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31309662

RESUMO

Metal-organic frameworks (MOFs) capable of mobility and manipulation are attractive materials for potential applications in targeted drug delivery, catalysis, and small-scale machines. One way of rendering MOFs navigable is incorporating magnetically responsive nanostructures, which usually involve at least two preparation steps: the growth of the magnetic nanomaterial and its incorporation during the synthesis of the MOF crystals. Now, by using optimal combinations of salts and ligands, zeolitic imidazolate framework composite structures with ferrimagnetic behavior can be readily obtained via a one-step synthetic procedure, that is, without the incorporation of extrinsic magnetic components. The ferrimagnetism of the composite originates from binary oxides of iron and transition metals such as cobalt. This approach exhibits similarities to the natural mineralization of iron oxide species, as is observed in ores and in biomineralization.

5.
Phys Rev Lett ; 121(9): 097202, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30230864

RESUMO

We predict that complete magnetization reversal in simple metallic ferromagnetic nanoparticles is directly linked to the pair creation of topological point defects in the form of hedgehog-antihedgehog pairs. These dynamical point defects move at exceptionally high speeds in excess of 1500 m/s, faster than any other known magnetic object. Their rapid motion generates unprecedented solenoidal emergent fields on the order of megavolts per meter, in analogy to the magnetic field of a moving electric charge, providing a striking example that a moving hedgehog constitutes an emergent magnetic monopole.

6.
Nat Commun ; 14(1): 3963, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407558

RESUMO

Magnetoelasticity is the bond between magnetism and mechanics, but the intricate mechanisms via which magnetic states change due to mechanical strain remain poorly understood. Here, we provide direct nanoscale observations of how tensile strain modifies magnetic domains in a ferromagnetic Ni thin plate using in situ Fresnel defocus imaging, off-axis electron holography and a bimetallic deformation device. We present quantitative measurements of magnetic domain wall structure and its transformations as a function of strain. We observe the formation and dissociation of strain-induced periodic 180° magnetic domain walls perpendicular to the strain axis. The magnetization transformation exhibits stress-determined directional sensitivity and is reversible and tunable through the size of the nanostructure. In this work, we provide direct evidence for expressive and deterministic magnetic hardening in ferromagnetic nanostructures, while our experimental approach allows quantifiable local measurements of strain-induced changes in the magnetic states of nanomaterials.

7.
Sci Rep ; 11(1): 3024, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542267

RESUMO

Magnetic stability of iron mineral phases is a key for their use as paleomagnetic information carrier and their applications in nanotechnology, and it critically depends on the size of the particles and their texture. Ferrimagnetic greigite (Fe3S4) in nature and synthesized in the laboratory forms almost exclusively polycrystalline particles. Textural effects of inter-grown, nano-sized crystallites on the macroscopic magnetization remain unresolved because their experimental detection is challenging. Here, we use ferromagnetic resonance (FMR) spectroscopy and static magnetization measurements in concert with micromagnetic simulations to detect and explain textural effects on the magnetic stability in synthetic, polycrystalline greigite flakes. We demonstrate that these effects stem from inter-grown crystallites with mean coherence length (MCL) of about 20 nm in single-domain magnetic state, which generate modifiable coherent magnetization volume (CMV) configurations in the flakes. At room temperature, the instability of the CVM configuration is exhibited by the angular dependence of the FMR spectra in fields of less than 100 mT and its reset by stronger fields. This finding highlights the magnetic manipulation of polycrystalline greigite, which is a novel trait to detect this mineral phase in Earth systems and to assess its fidelity as paleomagnetic information carrier. Additionally, our magneto-spectroscopic approach to analyse instable CMV opens the door for a new more rigorous magnetic assessment and interpretation of polycrystalline nano-materials.

8.
Sci Rep ; 10(1): 21209, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273594

RESUMO

Some of the best-performing high-temperature magnets are Sm-Co-based alloys with a microstructure that comprises an [Formula: see text] matrix and magnetically hard [Formula: see text] cell walls. This generates a dense domain-wall-pinning network that endows the material with remarkable magnetic hardness. A precise understanding of the coupling between magnetism and microstructure is essential for enhancing the performance of Sm-Co magnets, but experiments and theory have not yet converged to a unified model. Here, transmission electron microscopy, atom probe tomography, and nanometer-resolution off-axis electron holography have been combined with micromagnetic simulations to reveal that the magnetization state in Sm-Co magnets results from curling instabilities and domain-wall pinning effects at the intersections of phases with different magnetic hardness. Additionally, this study has found that topologically non-trivial magnetic domains separated by a complex network of domain walls play a key role in the magnetic state by acting as nucleation sites for magnetization reversal. These findings reveal previously hidden aspects of magnetism in Sm-Co magnets and, by identifying weak points in the microstructure, provide guidelines for improving these high-performance magnetic materials.

9.
J R Soc Interface ; 10(80): 20120790, 2013 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23269847

RESUMO

We report the use of S-band ferromagnetic resonance (FMR) spectroscopy to compare the anisotropic properties of magnetite particles in chains of cultured intact magnetotactic bacteria (MTB) between 300 and 15 K with those of sediment samples of Holocene age in order to infer the presence of magnetofossils and their preservation in a geological time frame. The spectrum of intact MTB at 300 K exhibits distinct uniaxial anisotropy because of the chain alignment of the cellular magnetite particles and their easy axes. This anisotropy becomes less pronounced upon cooling and below the Verwey transition (T(V)) it is nearly vanished mainly owing to the change of direction of the easy axes. In a natural sample, magnetofossils were detected by uniaxial anisotropy traits similar to those obtained from cultured MTB above T(V). Our comparative study emphasizes that indispensable information can be obtained from S-band FMR spectra, which offers even a better resolution than X-band FMR for discovering magnetofossils, and this in turn can contribute towards strengthening our relatively sparse database for deciphering the microbial ecology during the Earth's history.


Assuntos
Bactérias , Óxido Ferroso-Férrico/química , Fósseis , Espectroscopia de Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa