Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Exp Physiol ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890799

RESUMO

Osteocrin (OSTN) is an endogenous protein sharing structural similarities with the natriuretic peptides [NPs; atrial (ANP), B-type (BNP) and C-type (CNP) NP], which are hormones known for their crucial role in maintaining pressure/volume homeostasis. Osteocrin competes with the NPs for binding to the receptor involved in their clearance (NPR-C). In the present study, having identified, for the first time, the major circulating form of OSTN in human and ovine plasma, we examined the integrated haemodynamic, endocrine and renal effects of vehicle-controlled incremental infusions of ovine proOSTN (83-133) and its metabolism in eight conscious normal sheep. Incremental i.v. doses of OSTN produced stepwise increases in circulating concentrations of the peptide, and its metabolic clearance rate was inversely proportional to the dose. Osteocrin increased plasma levels of ANP, BNP and CNP in a dose-dependent manner, together with concentrations of their intracellular second messenger, cGMP. Increases in plasma cGMP were associated with progressive reductions in arterial pressure and central venous pressure. Plasma cAMP, renin and aldosterone were unchanged. Despite significant increases in urinary cGMP levels, OSTN administration was not associated with natriuresis or diuresis in normal sheep. These results support OSTN as an endogenous ligand for NPR-C in regulating plasma concentrations of NPs and associated cGMP-mediated bioactivity. Collectively, our findings support a role for OSTN in maintaining cardiovascular homeostasis.

2.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37958999

RESUMO

MiR-125b has therapeutic potential in the amelioration of myocardial ischemic injury. MicroRNA isomiRs, with either 5' or 3' addition or deletion of nucleotide(s), have been reported from next-generation sequencing data (NGS). However, due to technical challenges, validation and functional studies of isomiRs are few. In this study, we discovered using NGS, four 3'isomiRs of miR-125b, i.e., addition of A (adenosine), along with deletions of A, AG (guanosine) and AGU (uridine) from rat and sheep heart. These findings were validated using RT-qPCR. Comprehensive functional studies were carried out in the H9C2 hypoxia model. After miR-125b, isomiRs of Plus A, Trim A, AG and AGU mimic transfection, the H9C2 cells were subjected to hypoxic challenge. As assessed using cell viability, apoptosis, CCK-8 and LDH release, miR-125b and isomiRs were all protective against hypoxia. However, Plus A and Trim A were more effective than miR-125b, whilst Trim AG and Trim AGU had far weaker effects than miR-125b. Interestingly, both the gene regulation profile and apoptotic gene validation indicated a major overlap among miR-125b, Plus A and Trim A, whilst Trims AG and AGU revealed a different profile compared to miR-125b. Conclusions: miR-125b and its 3' isomiRs are expressed stably in the heart. miR-125b and isomiRs with addition or deletion of A might function concurrently and concordantly under specific physiological and pathophysiological conditions. In-depth understanding of isomiRs' metabolism and function will contribute to better miRNA therapeutic drug design.


Assuntos
MicroRNAs , Ratos , Animais , Ovinos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica , Apoptose/genética , Hipóxia/genética
3.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37047281

RESUMO

Mass spectrometry is a powerful technique for investigating renal pathologies and identifying biomarkers, and efficient protein extraction from kidney tissue is essential for bottom-up proteomic analyses. Detergent-based strategies aid cell lysis and protein solubilization but are poorly compatible with downstream protein digestion and liquid chromatography-coupled mass spectrometry, requiring additional purification and buffer-exchange steps. This study compares two well-established detergent-based methods for protein extraction (in-solution sodium deoxycholate (SDC); suspension trapping (S-Trap)) with the recently developed sample preparation by easy extraction and digestion (SPEED) method, which uses strong acid for denaturation. We compared the quantitative performance of each method using label-free mass spectrometry in both sheep kidney cortical tissue and plasma. In kidney tissue, SPEED quantified the most unique proteins (SPEED 1250; S-Trap 1202; SDC 1197). In plasma, S-Trap produced the most unique protein quantifications (S-Trap 150; SDC 148; SPEED 137). Protein quantifications were reproducible across biological replicates in both tissue (R2 = 0.85-0.90) and plasma (SPEED R2 = 0.84; SDC R2 = 0.76, S-Trap R2 = 0.65). Our data suggest SPEED as the optimal method for proteomic preparation in kidney tissue and S-Trap or SPEED as the optimal method for plasma, depending on whether a higher number of protein quantifications or greater reproducibility is desired.


Assuntos
Detergentes , Espectrometria de Massas em Tandem , Animais , Ovinos , Detergentes/química , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Reprodutibilidade dos Testes , Proteínas
4.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055195

RESUMO

One-quarter of patients with acute decompensated heart failure (ADHF) experience acute kidney injury (AKI)-an abrupt reduction or loss of kidney function associated with increased long-term mortality. There is a critical need to identify early and real-time markers of AKI in ADHF; however, to date, no protein biomarkers have exhibited sufficient diagnostic or prognostic performance for widespread clinical uptake. We aimed to identify novel protein biomarkers of AKI associated with ADHF by quantifying changes in protein abundance in the kidneys that occur during ADHF development and recovery in an ovine model. Relative quantitative protein profiling was performed using sequential window acquisition of all theoretical fragment ion spectra-mass spectrometry (SWATH-MS) in kidney cortices from control sheep (n = 5), sheep with established rapid-pacing-induced ADHF (n = 8), and sheep after ~4 weeks recovery from ADHF (n = 7). Of the 790 proteins quantified, we identified 17 candidate kidney injury markers in ADHF, 1 potential kidney marker of ADHF recovery, and 2 potential markers of long-term renal impairment (differential abundance between groups of 1.2-2.6-fold, adjusted p < 0.05). Among these 20 candidate protein markers of kidney injury were 6 candidates supported by existing evidence and 14 novel candidates not previously implicated in AKI. Proteins of differential abundance were enriched in pro-inflammatory signalling pathways: glycoprotein VI (activated during ADHF development; adjusted p < 0.01) and acute phase response (repressed during recovery from ADHF; adjusted p < 0.01). New biomarkers for the early detection of AKI in ADHF may help us to evaluate effective treatment strategies to prevent mortality and improve outcomes for patients.


Assuntos
Injúria Renal Aguda/diagnóstico , Biomarcadores/metabolismo , Insuficiência Cardíaca/metabolismo , Proteômica/métodos , Injúria Renal Aguda/sangue , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/urina , Animais , Biomarcadores/sangue , Biomarcadores/urina , Modelos Animais de Doenças , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/urina , Humanos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/urina , Prognóstico , Ovinos
5.
Int J Mol Sci ; 20(13)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277271

RESUMO

Cardiovascular diseases (CVD) represent the leading cause of morbidity and mortality globally. The emerging role of extracellular vesicles (EVs) in intercellular communication has stimulated renewed interest in exploring the potential application of EVs as tools for diagnosis, prognosis, and therapy in CVD. The ubiquitous nature of EVs in biological fluids presents a technological advantage compared to current diagnostic tools by virtue of their notable stability. EV contents, such as proteins and microRNAs, represent specific signatures of cellular activation or injury. This feature positions EVs as an alternative source of biomarkers. Furthermore, their intrinsic activity and immunomodulatory properties offer EVs unique opportunities to act as therapeutic agents per se or to serve as drug delivery carriers by acting as miniaturized vehicles incorporating bioactive molecules. In this article, we aim to review the recent advances and applications of EV-based biomarkers and therapeutics. In addition, the potential of EVs as a drug delivery and theranostic platform for CVD will also be discussed.


Assuntos
Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/tratamento farmacológico , Vesículas Extracelulares , Animais , Biomarcadores/análise , Sistemas de Liberação de Medicamentos , Humanos
6.
J Card Fail ; 22(1): 64-72, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26362519

RESUMO

BACKGROUND: The (pro)renin receptor [(P)RR] is implicated in the pathogenesis of cardiovascular disease. We investigated the effects of (P)RR blockade after myocardial infarction (MI) in a mouse coronary-ligation model. METHODS AND RESULTS: Mice underwent sham control surgeries (n = 8) or induction of MI followed by 28 days' treatment with a vehicle control (n = 8) or (P)RR antagonist (n = 8). Compared with sham control subjects, MI + vehicle mice demonstrated reduced left ventricular (LV) ejection fraction (LVEF: P < .001) and fractional shortening (P < .001), and increased LV end-systolic and -diastolic volumes (LVESV: P < .001; LVEDV: P < .001) 28 days after MI. In addition, MI decreased LV posterior wall and septal diameters (both P < .001), increased heart weight-body weight ratios (P < .05), LV collagen deposition, and cardiomyocyte diameter (both P < .001), and up-regulated collagen 1 (P < .01) and ß-myosin heavy chain (ß-MHC: P < .05) mRNA. Compared with MI + vehicle mice, (P)RR antagonism after MI reduced infarct size (P < .01), improved LVEF (P < .001), fractional shortening (P < .001), and stroke volume (P < .05), and decreased LVESV (P < .001) and LVEDV (P < .001). (P)RR antagonism also reversed MI-induced transmural thinning (P < .001) and reduced LV fibrosis (P < .01), cardiomyocyte size (P < .001), and ventricular collagen 1 (P < .01), ß-MHC (P = .06), transforming growth factor ß1 (P < .01), and angiotensin-converting enzyme (P < .05) expression. CONCLUSIONS: The present study found that (P)RR blockade after MI in mice ameliorates infarct size, cardiac fibrosis/hypertrophy, and cardiac dysfunction and identifies the receptor as a potential therapeutic target in this setting.


Assuntos
Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Miocárdio/patologia , Oligopeptídeos/farmacologia , ATPases Translocadoras de Prótons/antagonistas & inibidores , Receptores de Superfície Celular/antagonistas & inibidores , Remodelação Ventricular/efeitos dos fármacos , Animais , Cardiomegalia/prevenção & controle , Fibrose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oligopeptídeos/uso terapêutico , Função Ventricular Esquerda/efeitos dos fármacos
7.
Clin Exp Pharmacol Physiol ; 42(9): 888-895, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26173485

RESUMO

Sympatholytic and vasodilator drugs have been of major therapeutic benefit in patients with heart failure (HF). Urocortin-2 (Ucn2) is a small corticotrophin-related peptide distributed throughout the cardiovascular system which inhibits cardiac sympathetic nerve activity (CSNA) and is also a powerful vasodilator. This study analysed the effects of a 60-min infusion of Ucn2 (25 µg) on muscle sympathetic nerve activity (MSNA) recorded from the lower limb in eight healthy men and four men with stable HF. During Ucn2 infusion, mean arterial pressure fell to a nadir of 84 ± 2 compared to 95 ± 2 mmHg during placebo (P = 0.001) and heart rate increased to a maximum of 74 ± 1 compared to 64 ± 1 b.p.m. (P < 0.001). Total peripheral resistance fell by 23 ± 4% compared with an increase of 23 ± 4% (P < 0.001) and cardiac output increased by 22 ± 4 compared to 4 ± 4% (P = 0.001). The MSNA burst frequency increased by 9 ± 2 compared to 1 ± 2 burst/min (P = 0.005) and burst area/min by 133 ± 7 vs 107 ± 7% (P = 0.01). Burst incidence and baroreflex sensitivity were not significantly altered. Qualitatively similar changes were observed in stable HF patients. Ucn2-induced vasodilatation increased MSNA in humans, as opposed to the decrease in CSNA we observed in sheep. Therefore, if Ucn2 has a central inhibitory effect on MSNA, it was over-run by off-loading the cardiovagal baroreflex. Alternatively, CSNA may be less responsive to baroreflex off-loading than MSNA.

8.
J Clin Monit Comput ; 29(1): 65-76, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24619657

RESUMO

The rationale for intrathoracic impedance (Z) detection of worsening heart failure (HF) presupposes that changes in Z reflect changes in pulmonary congestion, but is confounded by poor specificity in clinical trials. We therefore tested the hypothesis that Z is primarily affected by tissue/water content in proximity to electrodes rather than by lung water distribution between electrodes through the use of a new computational model for deriving the near-field impedance contributions from the various electrodes. Six sheep were implanted with a left atrial pressure (LAP) monitor and a cardiac resynchronization therapy device which measured Z from six vectors comprising of five electrodes. The vector-based Z was modelled as the summation of the near-field impedances of the two electrodes forming the vector. During volume expansion an acute increase in LAP resulted in simultaneous reductions in the near-field impedances of the intra-cardiac electrodes, while the subcutaneous electrode showed several hours of lag (all p<0.001). In contrast, during the simulated formation of device-pocket edema (induced by fluid injection) the near-field impedance of the subcutaneous electrode had an instantaneous response, while the intra-cardiac electrodes had a minimal inconsistent response. This study suggests that the primary contribution to the vector based Z is from the tissue/water in proximity to the individual electrodes. This novel finding may help explain the limited utility of Z for detecting worsening HF.


Assuntos
Cardiografia de Impedância/métodos , Impedância Elétrica , Insuficiência Cardíaca/diagnóstico , Pulmão/patologia , Algoritmos , Anestesia Geral , Animais , Determinação da Pressão Arterial/métodos , Simulação por Computador , Edema/patologia , Eletrodos , Átrios do Coração/patologia , Insuficiência Cardíaca/patologia , Monitorização Fisiológica/métodos , Edema Pulmonar/diagnóstico , Ovinos , Fatores de Tempo , Água/química
9.
Am J Physiol Regul Integr Comp Physiol ; 307(2): R206-11, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24808496

RESUMO

The reported effects of atrial natriuretic peptide (ANP) on sympathetic nerve activity (SNA) are variable, dependent on concomitant hemodynamic actions, and likely to be regionally differentiated. There are few reports of the effect of B-type natriuretic peptide (BNP) on SNA and none have measured cardiac SNA (CSNA) by direct microneurography. We measured the effects of low-dose ANP and BNP (2.4 pmol·kg(-1)·min(-1) infused for 120 min) on CSNA and hemodynamics in conscious sheep (n = 8). While there was a trend for mean arterial pressure and cardiac output to fall with both ANP and BNP, changes were not significant compared with vehicle control. However, BNP did significantly reduce systolic arterial (97 ± 4.2 vs. 107 ± 6.8 mmHg during control; P = 0.043) and pulse pressures (0.047) and increase heart rate (110 ± 6.7 vs. 96 ± 7.3 beats/min; P = 0.044). Trends for these hemodynamic parameters to change with ANP did not achieve statistical significance. ANP also had no significant effect on any CSNA parameters measured. In contrast, BNP induced a rise in both CSNA burst frequency (∼20 bursts/min higher than control, P = 0.011) and burst area (∼40% higher than control, P = 0.013). BNP-induced rises in burst incidence (bursts/100 beats), and burst area per 100 beats, however, were not significant. In conclusion, BNP infused at low doses that only had subtle effects on hemodynamics increased CSNA burst frequency and burst are per minute. This increase in CSNA may in large part be secondary to an increase in heart rate as CSNA burst incidence and burst area per 100 beats were not significantly increased. This study provides no evidence for inhibition of CSNA by natriuretic peptides.


Assuntos
Frequência Cardíaca/efeitos dos fármacos , Coração/efeitos dos fármacos , Natriuréticos/farmacologia , Peptídeo Natriurético Encefálico/farmacologia , Sistema Nervoso Simpático/efeitos dos fármacos , Animais , Artérias/efeitos dos fármacos , Débito Cardíaco/efeitos dos fármacos , Feminino , Coração/inervação , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Natriuréticos/administração & dosagem , Peptídeo Natriurético Encefálico/administração & dosagem , Ovinos , Sistema Nervoso Simpático/fisiologia
10.
JACC Heart Fail ; 12(1): 100-113, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37921801

RESUMO

BACKGROUND: Intracellular second messenger cyclic guanosine monophosphate (cGMP) mediates bioactivity of the natriuretic peptides and nitric oxide, and is key to circulatory homeostasis and protection against cardiovascular disease. Inhibition of cGMP-degrading phosphodiesterases (PDEs) PDE5 and PDE9 are emerging as pharmacological targets in heart failure (HF). OBJECTIVES: The present study investigated dual enhancement of cGMP in experimental HF by combining inhibition of PDE-5 (P5-I) and PDE-9 (P9-I). METHODS: Eight sheep with pacing-induced HF received on separate days intravenous P5-I (sildenafil), P9-I (PF-04749982), P5-I+P9-I, and vehicle control, in counterbalanced order. RESULTS: Compared with control, separate P5-I and P9-I significantly increased circulating cGMP concentrations in association with reductions in mean arterial pressure (MAP), left atrial pressure (LAP), and pulmonary arterial pressure (PAP), with effects of P5-I on cGMP, MAP, and PAP greater than those of P9-I. Only P5-I decreased pulmonary vascular resistance. Combination P5-I+P9-I further reduced MAP, LAP, and PAP relative to inhibition of either phosphodiesterase alone. P9-I and, especially, P5-I elevated urinary cGMP levels relative to control. However, whereas inhibition of either enzyme increased urine creatinine excretion and clearance, only P9-I induced a significant diuresis and natriuresis. Combined P5-I+P9-I further elevated urine cGMP with concomitant increases in urine volume, sodium and creatinine excretion, and clearance similar to P9-I alone, despite the greater MAP reductions induced by combination treatment. CONCLUSIONS: Combined P5-I+P9-I amalgamated the superior renal effects of P9-I and pulmonary effects of P5-1, while concurrently further reducing cardiac preload and afterload. These findings support combination P5-I+P9-I as a therapeutic strategy in HF.


Assuntos
Insuficiência Cardíaca , Humanos , Animais , Ovinos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Creatinina , Inibidores de Fosfodiesterase/uso terapêutico , Inibidores de Fosfodiesterase/farmacologia , GMP Cíclico
11.
Microbiologyopen ; 12(6): e1391, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38129979

RESUMO

In the absence of liquid suspension, dry biofilms can form upon hard surfaces within a hospital environment, representing a healthcare-associated infection risk. Probiotic cleansers using generally recognized as safe organisms, such as those of the Bacillus genus, represent a potential strategy for the reduction of dry biofilm bioburden. The mechanisms of action and efficacy of these cleaners are, however, poorly understood. To address this, a preventative dry biofilm assay was developed using steel, melamine, and ceramic surfaces to assess the ability of a commercially available Bacillus spp. based probiotic cleanser to reduce the surface bioburden of Escherichia coli and Staphylococcus aureus. Via this assay, phosphate-buffered saline controls were able to generate dry biofilms within 7 days of incubation, with the application of the probiotic cleanser able to prevent >97.7% of dry biofilm formation across both pathogen analogs and surface types. Further to this, surfaces treated with the probiotic mixture alone also showed a reduction in dry biofilm across both pathogen and surface types. Confocal laser scanning microscopy imaging indicated that the probiotic bacteria were able to germinate and colonize surfaces, likely forming a protective layer upon these hard surfaces.


Assuntos
Bacillus , Probióticos , Staphylococcus aureus , Biofilmes , Hospitais
12.
JACC Heart Fail ; 11(2): 227-239, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36752488

RESUMO

BACKGROUND: The natriuretic peptides (NPs) are potent natriuretic/diuretic and vasodilatory factors, and augmentation of their levels or signaling via inhibition of the enzymes neprilysin (NEP) and phosphodiesterase 9 (PDE9), respectively, has beneficial actions in heart failure (HF). OBJECTIVES: The authors investigated dual enhancement of NP bioactivity by combining PDE9 inhibition and NEP inhibition in HF using an ovine model. METHODS: Eight sheep with pacing-induced HF received on 4 separate days intravenous PDE9 inhibition (PF-04749982), NEP inhibition (SCH-32615), PDE9 inhibition + NEP inhibition (PI+NI), and vehicle control treatment. RESULTS: Compared with the control treatment, NEP inhibition significantly increased plasma NP concentrations with a corresponding rise in second messenger cyclic guanosine monophosphate (cGMP), whereas PDE9 inhibition increased circulating cGMP with a negligible effect on NP levels. Combined PI+NI elevated plasma NPs to an extent comparable to that seen with NEP inhibition alone but further increased cGMP, resulting in a rise in the cGMP-to-NP ratio. All active treatments reduced mean arterial pressure, left atrial pressure, pulmonary arterial pressure, and peripheral resistance, with combined PI+NI further reducing mean arterial pressure and left atrial pressure relative to either inhibitor separately. Active treatments increased urine volume and sodium, potassium and creatinine excretion, and creatinine clearance, in association with rises in urine cGMP levels. PI+NI induced a significantly greater natriuresis and increase in urinary cGMP relative to either inhibitor singly. CONCLUSIONS: The present study demonstrates for the first time that combined PI+NI has additional beneficial hemodynamic and renal effects when compared with either PDE9 inhibition or NEP inhibition alone. The superior efficacy of this 2-pronged augmentation of NP bioactivity supports PI+NI as a potential therapeutic strategy for HF.


Assuntos
Insuficiência Cardíaca , Animais , Ovinos , Humanos , Neprilisina , Diester Fosfórico Hidrolases/uso terapêutico , Creatinina , Fator Natriurético Atrial , Peptídeos Natriuréticos , Vasodilatadores/uso terapêutico , GMP Cíclico , Diuréticos/uso terapêutico
13.
Nat Commun ; 14(1): 4335, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468458

RESUMO

Implanted bioelectronic devices can form distributed networks capable of sensing health conditions and delivering therapy throughout the body. Current clinically-used approaches for wireless communication, however, do not support direct networking between implants because of signal losses from absorption and reflection by the body. As a result, existing examples of such networks rely on an external relay device that needs to be periodically recharged and constitutes a single point of failure. Here, we demonstrate direct implant-to-implant wireless networking at the scale of the human body using metamaterial textiles. The textiles facilitate non-radiative propagation of radio-frequency signals along the surface of the body, passively amplifying the received signal strength by more than three orders of magnitude (>30 dB) compared to without the textile. Using a porcine model, we demonstrate closed-loop control of the heart rate by wirelessly networking a loop recorder and a vagus nerve stimulator at more than 40 cm distance. Our work establishes a wireless technology to directly network body-integrated devices for precise and adaptive bioelectronic therapies.


Assuntos
Próteses e Implantes , Têxteis , Animais , Humanos , Suínos , Tecnologia sem Fio , Ondas de Rádio , Desenho de Equipamento
14.
Clin Sci (Lond) ; 122(9): 429-37, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22087608

RESUMO

AM5 (adrenomedullin 5), a newly described member of the CGRP (calcitonin gene-related peptide) family, is reported to play a role in normal cardiovascular physiology. The effects of AM5 in HF (heart failure), however, have not been investigated. In the present study, we intravenously infused two incremental doses of AM5 (10 and 100 ng/min per kg of body weight each for 90 min) into eight sheep with pacing-induced HF. Compared with time-matched vehicle control infusions, AM5 produced progressive and dose-dependent increases in left ventricular dP/dt(max) [LD (low dose), +56 mmHg/s and HD (high dose), +152 mmHg/s] and cardiac output (+0.83 l/min and +1.81 l/min), together with decrements in calculated total peripheral resistance (-9.4 mmHg/min per litre and -14.7 mmHg/min per litre), mean arterial pressure (-2.8 mmHg and -8.4 mmHg) and LAP (left atrial pressure; -2.6 mmHg and -5.6 mmHg) (all P<0.001). HD AM5 significantly raised PRA (plasma renin activity) (3.5-fold increment, P<0.001), whereas plasma aldosterone levels were unchanged over the intra-infusion period and actually fell in the post-infusion period (70% decrement, P<0.01), resulting in a marked decrease in the aldosterone/PRA ratio (P<0.01). Despite falls in LAP, plasma atrial natriuretic peptide and B-type natriuretic peptide concentrations were maintained relative to controls. AM5 infusion also induced significant increases in urine volume (HD 2-fold increment, P<0.05) and urine sodium (2.7-fold increment, P<0.01), potassium (1.7-fold increment, P<0.05) and creatinine (1.4-fold increment, P<0.05) excretion and creatinine clearance (60% increment, P<0.05). In conclusion, AM5 has significant haemodynamic, endocrine and renal actions in experimental HF likely to be protective and compensatory in this setting. These results suggest that AM5 may have potential as a therapeutic agent in human HF.


Assuntos
Adrenomedulina/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Adrenomedulina/administração & dosagem , Adrenomedulina/classificação , Adrenomedulina/fisiologia , Aldosterona/sangue , Animais , Fator Natriurético Atrial/sangue , AMP Cíclico/sangue , Modelos Animais de Doenças , Feminino , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Humanos , Infusões Intravenosas , Rim/efeitos dos fármacos , Rim/fisiopatologia , Peptídeo Natriurético Encefálico/sangue , Renina/sangue , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/fisiologia , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Carneiro Doméstico
15.
J Mech Behav Biomed Mater ; 126: 104937, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34979481

RESUMO

Numerical modeling of heart biomechanics can realistically capture morphological variations in diseases and has been helpful in advancing our understanding of the physiology. Subject-specific models require anatomic representation of medical images, and it is desirable to have a consistently repeatable models for any given morphology. In this study, we propose a novel and easily adaptable cardiac reconstruction algorithm by morphing an existing discretized mesh of an advanced finite element (FE) model, to match anatomies acquired from porcine cardiac magnetic resonance imaging (cMRI) scans. The morphing algorithm involves iterative FE simulations with visco-hyperelastic material properties. The living heart porcine model (LHPM) was chosen as the input baseline FE mesh, in order to preserve detailed anatomical features that cannot be captured in routine scans such as myofiber orientations and conduction pathways. The algorithm was demonstrated for the recreation of porcine hearts of a healthy subject and of a subject induced with heart failure with preserved ejection fraction (HFpEF) conditions, where there were substantial hypertrophy and anatomical alterations. We further used the morphed meshes for FE modeling of cardiac contraction and relaxation, thus demonstrating the applicability of the proposed algorithm in producing viable meshes. The results show that our algorithm can recreate the characteristic anatomical changes of cardiac remodeling, including heart muscle thickening, as well as replicate the reduction in ventricular volume. This algorithm allows for the creation of subject-specific models with the same mesh connectivity, thus enabling spatial comparison and analysis of pathologic progress.


Assuntos
Insuficiência Cardíaca , Algoritmos , Animais , Análise de Elementos Finitos , Volume Sistólico , Telas Cirúrgicas , Suínos
16.
Front Bioeng Biotechnol ; 10: 1032034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312535

RESUMO

A substantial proportion of heart failure patients have a preserved left ventricular (LV) ejection fraction (HFpEF). This condition carries a high burden of morbidity and mortality and has limited therapeutic options. left ventricular pressure overload leads to an increase in myocardial collagen content, causing left ventricular stiffening that contributes to the development of heart failure patients have a preserved left ventricular ejection fraction. Although several heart failure patients have a preserved left ventricular ejection fraction models have been developed in recent years to aid the investigation of mechanical alterations, none has investigated different phenotypes of the disease and evaluated the alterations in material properties. In this study, two similar healthy swine were subjected to progressive and prolonged pressure overload to induce diastolic heart failure characteristics, providing a preclinical model of heart failure patients have a preserved left ventricular ejection fraction. Cardiac magnetic resonance imaging (cMRI) scans and intracardiac pressures were recorded before and after induction. In both healthy and disease states, a corresponding finite element (FE) cardiac model was developed via mesh morphing of the Living Heart Porcine model. The material properties were derived by calibrating to its passive and active behavior. The change in the passive behavior was predominantly isotropic when comparing the geometries before and after induction. Myocardial thickening allowed for a steady transition in the passive properties while maintaining tissue incompressibility. This study highlights the importance of hypertrophy as an initial compensatory response and might also pave the way for assessing disease severity.

17.
Comput Biol Med ; 145: 105524, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35447462

RESUMO

A covered stent has been used to treat carotid artery stenosis to reduce the chance of embolization, as it offers improved performance over bare-metal stents. However, membrane infolding of covered stents can affect efficiency and functionality for treating occlusive disease of first-order aortic branches. In order to mitigate the degree of infolding of the stent once it was re-expanded, we proposed a new coating method performed on the pre-crimped stent. A systematic study was carried out to evaluate this new coating technique: a) in vivo animal testing to determine the degree of membrane infolding; b) structural finite element modeling and simulation were used to evaluate the mechanical performance of the covered stent; and c) computational fluid dynamics (CFD) to evaluate hemodynamic behavior of the stents and risk of thrombosis after stent deployment. The degree of infolding was substantially reduced as demonstrated by the in vivo deployment of the pre-crimped stent compared to a conventional dip-coated stent. The structural analysis results demonstrated that the membrane of the covered stent manufactured by conventional dip-coating resulted in a large degree of infolding but this could be minimized by our new pre-crimped coating method. CFD studies showed that the new coating method reduced the risk of thrombosis compared to the conventional coating method. In conclusion, both simulation and in vivo testing demonstrate that our new pre-crimped coating method reduces membrane infolding compared with the conventional dip-coating method and may reduce risk of thrombosis.


Assuntos
Estenose das Carótidas , Trombose , Animais , Simulação por Computador , Hemodinâmica , Stents
18.
Front Physiol ; 13: 898775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711303

RESUMO

Background: Both heart failure (HF) with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF) can present a wide variety of cardiac morphologies consequent to cardiac remodeling. We sought to study if geometric changes to the heart during such remodeling will adversely affect the ejection fraction (EF) parameter's ability to serve as an indicator of heart function, and to identify the mechanism for it. Methods and Results: A numerical model that simulated the conversion of myocardial strain to stroke volume was developed from two porcine animal models of heart failure. Hypertrophic wall thickening was found to elevate EF, while left ventricle (LV) dilation was found to depress EF when myocardial strain was kept constant, causing EF to inaccurately represent the overall strain function. This was caused by EF being calculated using the endocardial boundary rather than the mid-wall layer. Radial displacement of the endocardial boundary resulted in endocardial strain deviating from the overall LV strain, and this deviation varied with LV geometric changes. This suggested that using the epi- or endo-boundaries to calculate functional parameters was not effective, and explained why EF could be adversely affected by geometric changes. Further, when EF was modified by calculating it at the mid-wall layer instead of at the endocardium, this shortcoming was resolved, and the mid-wall EF could differentiate between healthy and HFpEF subjects in our animal models, while the traditional EF could not. Conclusion: We presented the mechanism to explain why EF can no longer effectively indicate cardiac function during cardiac geometric changes relevant to HF remodeling, losing the ability to distinguish between hypertrophic diseased hearts from healthy hearts. Measuring EF at the mid-wall location rather than endocardium can avoid the shortcoming and better represent the cardiac strain function.

19.
J Biomech ; 144: 111348, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36265421

RESUMO

Heart failure (HF) with preserved ejection fraction (HFpEF) accounts for about half of heart failure cases, but the progression of cardiac biomechanics during pathogenesis is not completely understood. We investigated a published porcine model of HFpEF, generated by progressive constriction of an aortic cuff causing progressive left ventricle (LV) pressure overload, and characterized by hypertrophy, diastolic dysfunction and overt HF with elevated plasma beta natriuretic peptide (BNP). We characterized morphological and functional features and performed image-based finite element modelling over multiple time points, so as to understand how biomechanics evolved with morphological and functional changes during pathogenesis, and to provide data for future growth and remodeling investigations. Results showed that the hypertrophic responses quickly manifested and were effective at preventing an elevation of systolic myocardial stresses, suggesting active compensated remodeling. Consequent to the hypertrophy, diastolic myocardial stresses decreased despite the elevations in diastolic pressures. The left ventricle hypertrophy (LVH) myocardium also exhibited a quick elevation of active tension at the onset of the disease. There was a progressive and significant decrease in myocardial strain, which was more significant in the longitudinal direction. Further, elevated myocardial stiffness and diastolic pressures, which reflected diastolic dysfunction, also manifested, but this was delayed from the onset of the disease. Correlation analysis showed that hypertrophy was closely correlated to systolic pressure, active tension and systolic myocardial stress, suggesting that these factors may play a role in initiating hypertrophy. Myocardial stiffness was weakly correlated to LV pressures and myocardial stresses.


Assuntos
Insuficiência Cardíaca , Suínos , Animais , Volume Sistólico/fisiologia , Insuficiência Cardíaca/etiologia , Remodelação Ventricular , Função Ventricular Esquerda/fisiologia , Hipertrofia/complicações
20.
Microbiologyopen ; 11(4): e1309, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36031955

RESUMO

Extremes of pH present a challenge to microbial life and our understanding of survival strategies for microbial consortia, particularly at high pH, remains limited. The utilization of extracellular polymeric substances within complex biofilms allows micro-organisms to obtain a greater level of control over their immediate environment. This manipulation of the immediate environment may confer a survival advantage in adverse conditions to biofilms. Within the present study alkaliphilic biofilms were created at pH 11.0, 12.0, or 13.0 from an existing alkaliphilic community. In each pH system, the biofilm matrix provided pH buffering, with the internal pH being 1.0-1.5 pH units lower than the aqueous environment. Increasing pH resulted in a reduced removal of substrate and standing biomass associated with the biofilm. At the highest pH investigated (pH 13.0), the biofilms matrix contained a greater degree of eDNA and the microbial community was dominated by Dietzia sp. and Anaerobranca sp.


Assuntos
Biofilmes , Matriz Extracelular de Substâncias Poliméricas , Biomassa , Concentração de Íons de Hidrogênio , Consórcios Microbianos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa