Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 525(7567): 109-13, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26258302

RESUMO

Mitral valve prolapse (MVP) is a common cardiac valve disease that affects nearly 1 in 40 individuals. It can manifest as mitral regurgitation and is the leading indication for mitral valve surgery. Despite a clear heritable component, the genetic aetiology leading to non-syndromic MVP has remained elusive. Four affected individuals from a large multigenerational family segregating non-syndromic MVP underwent capture sequencing of the linked interval on chromosome 11. We report a missense mutation in the DCHS1 gene, the human homologue of the Drosophila cell polarity gene dachsous (ds), that segregates with MVP in the family. Morpholino knockdown of the zebrafish homologue dachsous1b resulted in a cardiac atrioventricular canal defect that could be rescued by wild-type human DCHS1, but not by DCHS1 messenger RNA with the familial mutation. Further genetic studies identified two additional families in which a second deleterious DCHS1 mutation segregates with MVP. Both DCHS1 mutations reduce protein stability as demonstrated in zebrafish, cultured cells and, notably, in mitral valve interstitial cells (MVICs) obtained during mitral valve repair surgery of a proband. Dchs1(+/-) mice had prolapse of thickened mitral leaflets, which could be traced back to developmental errors in valve morphogenesis. DCHS1 deficiency in MVP patient MVICs, as well as in Dchs1(+/-) mouse MVICs, result in altered migration and cellular patterning, supporting these processes as aetiological underpinnings for the disease. Understanding the role of DCHS1 in mitral valve development and MVP pathogenesis holds potential for therapeutic insights for this very common disease.


Assuntos
Caderinas/genética , Caderinas/metabolismo , Prolapso da Valva Mitral/genética , Prolapso da Valva Mitral/patologia , Mutação/genética , Animais , Padronização Corporal/genética , Proteínas Relacionadas a Caderinas , Caderinas/deficiência , Movimento Celular/genética , Cromossomos Humanos Par 11/genética , Feminino , Humanos , Masculino , Camundongos , Valva Mitral/anormalidades , Valva Mitral/embriologia , Valva Mitral/patologia , Valva Mitral/cirurgia , Linhagem , Fenótipo , Estabilidade Proteica , RNA Mensageiro/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Nucleic Acids Res ; 41(18): e176, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23963699

RESUMO

The telomerase enzyme plays a critical role in human aging and cancer biology by maintaining telomere length and extending the proliferative lifespan of most stem cells and cancer cells. Despite the importance of this enzyme, our understanding of the mechanisms that regulate its activity and establish telomere length homeostasis in mammalian cells is incomplete, in part because the perfect repetitive nature of telomeric sequence hampers in situ detection of telomere elongation patterns. Here, we describe a novel assay using a mutant telomerase that adds a well-tolerated variant telomeric repeat sequence to telomere ends. By specifically detecting the addition of these variant repeats, we can directly visualize telomere elongation events in human cells. We validate this approach by in situ mapping of telomere elongation patterns within individual nuclei and across a population of cells.


Assuntos
Homeostase do Telômero , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/genética , DNA/química , Células HeLa , Humanos , Hibridização in Situ Fluorescente , Mutação , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sequências Repetitivas de Ácido Nucleico , Telômero/química
3.
J Cell Physiol ; 222(2): 328-35, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19885840

RESUMO

MCOLN1 encodes mucolipin-1 (TRPML1), a member of the transient receptor potential TRPML subfamily of channel proteins. Mutations in MCOLN1 cause mucolipidosis-type IV (MLIV), a lysosomal storage disorder characterized by severe neurologic, ophthalmologic, and gastrointestinal abnormalities. Along with TRPML1, there are two other TRPML family members, mucolipin-2 (TRPML2) and mucolipin-3 (TRPML3). In this study, we used immunocytochemical analysis to determine that TRPML1, TRPML2, and TRPML3 co-localize in cells. The multimerization of TRPML proteins was confirmed by co-immunoprecipitation and Western blot analysis, which demonstrated that TRPML1 homo-multimerizes as well as hetero-multimerizes with TRPML2 and TRPML3. MLIV-causing mutants of TRPML1 also interacted with wild-type TRPML1. Lipid bilayer re-constitution of in vitro translated TRPML2 and TRPML3 confirmed their cation channel properties with lower single channel conductance and higher partial permeability to anions as compared to TRPML1. We further analyzed the electrophysiological properties of single channel TRPML hetero-multimers, which displayed functional differences when compared to individual TRPMLs. Our data shows for the first time that TRPMLs form distinct functional channel complexes. Homo- and hetero-multimerization of TRPMLs may modulate channel function and biophysical properties, thereby increasing TRPML functional diversity.


Assuntos
Multimerização Proteica , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Western Blotting , Células CHO , Permeabilidade da Membrana Celular , Cricetinae , Cricetulus , Humanos , Imuno-Histoquímica , Imunoprecipitação , Potenciais da Membrana , Mutação , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Canais de Cátion TRPM/metabolismo , Transfecção , Canais de Potencial de Receptor Transitório/genética
4.
Neurobiol Dis ; 40(2): 370-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20600908

RESUMO

Mucolipidosis type IV is a neurodegenerative lysosomal disease clinically characterized by psychomotor retardation, visual impairment, and achlorhydria. In this study we report the development of a neuronal cell model generated from cerebrum of Mcoln1(-/-) embryos. Prior functional characterization of MLIV cells has been limited to fibroblast cultures gleaned from patients. The current availability of the mucolipin-1 knockout mouse model Mcoln1(-/-) allows the study of mucolipin-1-defective neurons, which is important since the disease is characterized by severe neurological impairment. Electron microscopy studies reveal significant membranous intracytoplasmic storage bodies, which correlate with the storage morphology observed in cerebral cortex of Mcoln1(-/-) P7 pups and E17 embryos. The Mcoln1(-/-) neuronal cultures show an increase in size of LysoTracker and Lamp1 positive vesicles. Using this neuronal model system, we show that macroautophagy is defective in mucolipin-1-deficient neurons and that LC3-II levels are significantly elevated. Treatment with rapamycin plus protease inhibitors did not increase levels of LC3-II in Mcoln1(-/-) neuronal cultures, indicating that the lack of mucolipin-1 affects LC3-II clearance. P62/SQSTM1 and ubiquitin levels were also increased in Mcoln1(-/-) neuronal cultures, suggesting an accumulation of protein aggregates and a defect in macroautophagy which could help explain the neurodegeneration observed in MLIV. This study describes, for the first time, a defect in macroautophagy in mucolipin-1-deficient neurons, which corroborates recent findings in MLIV fibroblasts and provides new insight into the neuronal pathogenesis of this disease.


Assuntos
Autofagia , Mucolipidoses/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Canais de Cátion TRPM/deficiência , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aminas/metabolismo , Animais , Células Cultivadas , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Camundongos , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/metabolismo , Mucolipidoses/genética , Neurônios/ultraestrutura , Proteína Sequestossoma-1 , Canais de Cátion TRPM/genética , Fator de Transcrição TFIIH , Fatores de Transcrição/metabolismo , Canais de Potencial de Receptor Transitório , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa