Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.539
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 36: 43-71, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29144838

RESUMO

Human T cell leukemia virus type 1 (HTLV-1), also known as human T lymphotropic virus type 1, was the first exogenous human retrovirus discovered. Unlike the distantly related lentivirus HIV-1, HTLV-1 causes disease in only 5-10% of infected people, depending on their ethnic origin. But whereas HIV-1 infection and the consequent diseases can be efficiently contained in most cases by antiretroviral drug treatment, there is no satisfactory treatment for the malignant or inflammatory diseases caused by HTLV-1. The purpose of the present article is to review recent advances in the understanding of the mechanisms by which the virus persists in vivo and causes disabling or fatal diseases.


Assuntos
Infecções por HTLV-I/imunologia , Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Animais , Suscetibilidade a Doenças , Infecções por HTLV-I/complicações , Infecções por HTLV-I/epidemiologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade , Imunidade Celular , Interferon Tipo I/metabolismo , Leucemia-Linfoma de Células T do Adulto/etiologia , Leucemia-Linfoma de Células T do Adulto/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/imunologia , Proteínas Virais Reguladoras e Acessórias/metabolismo , Latência Viral/imunologia
2.
Annu Rev Immunol ; 35: 371-402, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446062

RESUMO

Nutrition and the gut microbiome regulate many systems, including the immune, metabolic, and nervous systems. We propose that the host responds to deficiency (or sufficiency) of dietary and bacterial metabolites in a dynamic way, to optimize responses and survival. A family of G protein-coupled receptors (GPCRs) termed the metabolite-sensing GPCRs bind to various metabolites and transmit signals that are important for proper immune and metabolic functions. Members of this family include GPR43, GPR41, GPR109A, GPR120, GPR40, GPR84, GPR35, and GPR91. In addition, bile acid receptors such as GPR131 (TGR5) and proton-sensing receptors such as GPR65 show similar features. A consistent feature of this family of GPCRs is that they provide anti-inflammatory signals; many also regulate metabolism and gut homeostasis. These receptors represent one of the main mechanisms whereby the gut microbiome affects vertebrate physiology, and they also provide a link between the immune and metabolic systems. Insufficient signaling through one or more of these metabolite-sensing GPCRs likely contributes to human diseases such as asthma, food allergies, type 1 and type 2 diabetes, hepatic steatosis, cardiovascular disease, and inflammatory bowel diseases.


Assuntos
Doenças Cardiovasculares/imunologia , Diabetes Mellitus Tipo 1/imunologia , Microbioma Gastrointestinal/imunologia , Hipersensibilidade/imunologia , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Dieta , Homeostase , Humanos , Imunidade , Receptores Acoplados a Proteínas G/imunologia
3.
Cell ; 185(6): 1065-1081.e23, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35245431

RESUMO

Motor behaviors are often planned long before execution but only released after specific sensory events. Planning and execution are each associated with distinct patterns of motor cortex activity. Key questions are how these dynamic activity patterns are generated and how they relate to behavior. Here, we investigate the multi-regional neural circuits that link an auditory "Go cue" and the transition from planning to execution of directional licking. Ascending glutamatergic neurons in the midbrain reticular and pedunculopontine nuclei show short latency and phasic changes in spike rate that are selective for the Go cue. This signal is transmitted via the thalamus to the motor cortex, where it triggers a rapid reorganization of motor cortex state from planning-related activity to a motor command, which in turn drives appropriate movement. Our studies show how midbrain can control cortical dynamics via the thalamus for rapid and precise motor behavior.


Assuntos
Córtex Motor , Movimento , Tálamo , Animais , Mesencéfalo , Camundongos , Córtex Motor/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia
4.
Nat Immunol ; 24(11): 1947-1959, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37845489

RESUMO

Age-associated changes in the T cell compartment are well described. However, limitations of current single-modal or bimodal single-cell assays, including flow cytometry, RNA-seq (RNA sequencing) and CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing), have restricted our ability to deconvolve more complex cellular and molecular changes. Here, we profile >300,000 single T cells from healthy children (aged 11-13 years) and older adults (aged 55-65 years) by using the trimodal assay TEA-seq (single-cell analysis of mRNA transcripts, surface protein epitopes and chromatin accessibility), which revealed that molecular programming of T cell subsets shifts toward a more activated basal state with age. Naive CD4+ T cells, considered relatively resistant to aging, exhibited pronounced transcriptional and epigenetic reprogramming. Moreover, we discovered a novel CD8αα+ T cell subset lost with age that is epigenetically poised for rapid effector responses and has distinct inhibitory, costimulatory and tissue-homing properties. Together, these data reveal new insights into age-associated changes in the T cell compartment that may contribute to differential immune responses.


Assuntos
Subpopulações de Linfócitos T , Transcriptoma , Criança , Humanos , Idoso , Envelhecimento/genética , Epitopos/metabolismo , Análise de Célula Única
5.
Cell ; 183(3): 605-619.e22, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33031743

RESUMO

Exploration of novel environments ensures survival and evolutionary fitness. It is expressed through exploratory bouts and arrests that change dynamically based on experience. Neural circuits mediating exploratory behavior should therefore integrate experience and use it to select the proper behavioral output. Using a spatial exploration assay, we uncovered an experience-dependent increase in momentary arrests in locations where animals arrested previously. Calcium imaging in freely exploring mice revealed a genetically and projection-defined neuronal ensemble in the basolateral amygdala that is active during self-paced behavioral arrests. This ensemble was recruited in an experience-dependent manner, and closed-loop optogenetic manipulation of these neurons revealed that they are sufficient and necessary to drive experience-dependent arrests during exploration. Projection-specific imaging and optogenetic experiments revealed that these arrests are effected by basolateral amygdala neurons projecting to the central amygdala, uncovering an amygdala circuit that mediates momentary arrests in familiar places but not avoidance or anxiety/fear-like behaviors.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Núcleo Central da Amígdala/fisiologia , Comportamento Exploratório/fisiologia , Rede Nervosa/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/diagnóstico por imagem , Comportamento Animal/fisiologia , Núcleo Central da Amígdala/diagnóstico por imagem , Feminino , Locomoção , Aprendizado de Máquina , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Imagem Óptica
6.
Cell ; 179(1): 268-281.e13, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31495573

RESUMO

Neuronal cell types are the nodes of neural circuits that determine the flow of information within the brain. Neuronal morphology, especially the shape of the axonal arbor, provides an essential descriptor of cell type and reveals how individual neurons route their output across the brain. Despite the importance of morphology, few projection neurons in the mouse brain have been reconstructed in their entirety. Here we present a robust and efficient platform for imaging and reconstructing complete neuronal morphologies, including axonal arbors that span substantial portions of the brain. We used this platform to reconstruct more than 1,000 projection neurons in the motor cortex, thalamus, subiculum, and hypothalamus. Together, the reconstructed neurons constitute more than 85 meters of axonal length and are available in a searchable online database. Axonal shapes revealed previously unknown subtypes of projection neurons and suggest organizational principles of long-range connectivity.


Assuntos
Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Neuritos/fisiologia , Tratos Piramidais/fisiologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Software , Transfecção
7.
Nat Immunol ; 22(12): 1538-1550, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34795444

RESUMO

The signals driving the adaptation of type 2 dendritic cells (DC2s) to diverse peripheral environments remain mostly undefined. We show that differentiation of CD11blo migratory DC2s-a DC2 population unique to the dermis-required IL-13 signaling dependent on the transcription factors STAT6 and KLF4, whereas DC2s in lung and small intestine were STAT6-independent. Similarly, human DC2s in skin expressed an IL-4 and IL-13 gene signature that was not found in blood, spleen and lung DCs. In mice, IL-13 was secreted homeostatically by dermal innate lymphoid cells and was independent of microbiota, TSLP or IL-33. In the absence of IL-13 signaling, dermal DC2s were stable in number but remained CD11bhi and showed defective activation in response to allergens, with diminished ability to support the development of IL-4+GATA3+ helper T cells (TH), whereas antifungal IL-17+RORγt+ TH cells were increased. Therefore, homeostatic IL-13 fosters a noninflammatory skin environment that supports allergic sensitization.


Assuntos
Comunicação Celular , Diferenciação Celular , Interleucina-13/metabolismo , Células de Langerhans/metabolismo , Pele/metabolismo , Células Th17/metabolismo , Células Th2/metabolismo , Alérgenos/farmacologia , Animais , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Células Cultivadas , Bases de Dados Genéticas , Humanos , Interleucina-13/genética , Células de Langerhans/efeitos dos fármacos , Células de Langerhans/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais , Pele/citologia , Pele/efeitos dos fármacos , Pele/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Transcriptoma
8.
Immunity ; 56(2): 307-319.e8, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36736320

RESUMO

Gaucher disease (GD) is the most common lysosomal storage disease caused by recessive mutations in the degrading enzyme of ß-glucosylceramide (ß-GlcCer). However, it remains unclear how ß-GlcCer causes severe neuronopathic symptoms, which are not fully treated by current therapies. We herein found that ß-GlcCer accumulating in GD activated microglia through macrophage-inducible C-type lectin (Mincle) to induce phagocytosis of living neurons, which exacerbated Gaucher symptoms. This process was augmented by tumor necrosis factor (TNF) secreted from activated microglia that sensitized neurons for phagocytosis. This characteristic pathology was also observed in human neuronopathic GD. Blockade of these pathways in mice with a combination of FDA-approved drugs, minocycline (microglia activation inhibitor) and etanercept (TNF blocker), effectively protected neurons and ameliorated neuronopathic symptoms. In this study, we propose that limiting unrestrained microglia activation using drug repurposing provides a quickly applicable therapeutic option for fatal neuronopathic GD.


Assuntos
Doença de Gaucher , Camundongos , Animais , Humanos , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Doença de Gaucher/patologia , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Glucosilceramidase/uso terapêutico , Glucosilceramidas/metabolismo , Glucosilceramidas/uso terapêutico , Microglia/metabolismo , Neurônios/metabolismo , Fagocitose
9.
Cell ; 171(2): 440-455.e14, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28942925

RESUMO

Corticospinal neurons (CSNs) represent the direct cortical outputs to the spinal cord and play important roles in motor control across different species. However, their organizational principle remains unclear. By using a retrograde labeling system, we defined the requirement of CSNs in the execution of a skilled forelimb food-pellet retrieval task in mice. In vivo imaging of CSN activity during performance revealed the sequential activation of topographically ordered functional ensembles with moderate local mixing. Region-specific manipulations indicate that CSNs from caudal or rostral forelimb area control reaching or grasping, respectively, and both are required in the transitional pronation step. These region-specific CSNs terminate in different spinal levels and locations, therefore preferentially connecting with the premotor neurons of muscles engaged in different steps of the task. Together, our findings suggest that spatially defined groups of CSNs encode different movement modules, providing a logic for parallel-ordered corticospinal circuits to orchestrate multistep motor skills.


Assuntos
Medula Cervical/fisiologia , Destreza Motora , Vias Neurais , Animais , Cálcio/análise , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Medula Cervical/citologia , Membro Anterior/fisiologia , Articulações/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
11.
Immunity ; 55(7): 1284-1298.e3, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35779527

RESUMO

While studies have elucidated many pathophysiological elements of COVID-19, little is known about immunological changes during COVID-19 resolution. We analyzed immune cells and phosphorylated signaling states at single-cell resolution from longitudinal blood samples of patients hospitalized with COVID-19, pneumonia and/or sepsis, and healthy individuals by mass cytometry. COVID-19 patients showed distinct immune compositions and an early, coordinated, and elevated immune cell signaling profile associated with early hospital discharge. Intra-patient longitudinal analysis revealed changes in myeloid and T cell frequencies and a reduction in immune cell signaling across cell types that accompanied disease resolution and discharge. These changes, together with increases in regulatory T cells and reduced signaling in basophils, also accompanied recovery from respiratory failure and were associated with better outcomes at time of admission. Therefore, although patients have heterogeneous immunological baselines and highly variable disease courses, a core immunological trajectory exists that defines recovery from severe SARS-CoV-2 infection.


Assuntos
COVID-19 , Pneumonia , Progressão da Doença , Humanos , SARS-CoV-2
12.
Cell ; 161(6): 1453-67, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26046444

RESUMO

Resetting of the epigenome in human primordial germ cells (hPGCs) is critical for development. We show that the transcriptional program of hPGCs is distinct from that in mice, with co-expression of somatic specifiers and naive pluripotency genes TFCP2L1 and KLF4. This unique gene regulatory network, established by SOX17 and BLIMP1, drives comprehensive germline DNA demethylation by repressing DNA methylation pathways and activating TET-mediated hydroxymethylation. Base-resolution methylome analysis reveals progressive DNA demethylation to basal levels in week 5-7 in vivo hPGCs. Concurrently, hPGCs undergo chromatin reorganization, X reactivation, and imprint erasure. Despite global hypomethylation, evolutionarily young and potentially hazardous retroelements, like SVA, remain methylated. Remarkably, some loci associated with metabolic and neurological disorders are also resistant to DNA demethylation, revealing potential for transgenerational epigenetic inheritance that may have phenotypic consequences. We provide comprehensive insight on early human germline transcriptional network and epigenetic reprogramming that subsequently impacts human development and disease.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Genoma Humano , Células Germinativas/metabolismo , Animais , Metilação de DNA , Embrião de Mamíferos/metabolismo , Feminino , Humanos , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Regiões Promotoras Genéticas , Retroelementos
13.
Nature ; 625(7993): 101-109, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38093010

RESUMO

Recent technological innovations have enabled the high-throughput quantification of gene expression and epigenetic regulation within individual cells, transforming our understanding of how complex tissues are constructed1-6. However, missing from these measurements is the ability to routinely and easily spatially localize these profiled cells. We developed a strategy, Slide-tags, in which single nuclei within an intact tissue section are tagged with spatial barcode oligonucleotides derived from DNA-barcoded beads with known positions. These tagged nuclei can then be used as an input into a wide variety of single-nucleus profiling assays. Application of Slide-tags to the mouse hippocampus positioned nuclei at less than 10 µm spatial resolution and delivered whole-transcriptome data that are indistinguishable in quality from ordinary single-nucleus RNA-sequencing data. To demonstrate that Slide-tags can be applied to a wide variety of human tissues, we performed the assay on brain, tonsil and melanoma. We revealed cell-type-specific spatially varying gene expression across cortical layers and spatially contextualized receptor-ligand interactions driving B cell maturation in lymphoid tissue. A major benefit of Slide-tags is that it is easily adaptable to almost any single-cell measurement technology. As a proof of principle, we performed multiomic measurements of open chromatin, RNA and T cell receptor (TCR) sequences in the same cells from metastatic melanoma, identifying transcription factor motifs driving cancer cell state transitions in spatially distinct microenvironments. Slide-tags offers a universal platform for importing the compendium of established single-cell measurements into the spatial genomics repertoire.


Assuntos
Código de Barras de DNA Taxonômico , Genômica , Animais , Humanos , Camundongos , Encéfalo/citologia , Encéfalo/metabolismo , Cromatina/genética , Cromatina/metabolismo , Código de Barras de DNA Taxonômico/métodos , Epigênese Genética , Perfilação da Expressão Gênica , Genômica/métodos , Melanoma/genética , Melanoma/patologia , Tonsila Palatina/citologia , Tonsila Palatina/metabolismo , Receptores de Antígenos de Linfócitos T/genética , RNA/genética , Análise de Célula Única/métodos , Transcriptoma/genética , Microambiente Tumoral , Hipocampo/citologia , Hipocampo/metabolismo , Análise da Expressão Gênica de Célula Única , Especificidade de Órgãos , Ligantes , Elementos de Resposta/genética , Fatores de Transcrição/metabolismo
14.
Nature ; 626(8001): 1066-1072, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326610

RESUMO

Animals can learn about sources of danger while minimizing their own risk by observing how others respond to threats. However, the distinct neural mechanisms by which threats are learned through social observation (known as observational fear learning1-4 (OFL)) to generate behavioural responses specific to such threats remain poorly understood. The dorsomedial prefrontal cortex (dmPFC) performs several key functions that may underlie OFL, including processing of social information and disambiguation of threat cues5-11. Here we show that dmPFC is recruited and required for OFL in mice. Using cellular-resolution microendoscopic calcium imaging, we demonstrate that dmPFC neurons code for observational fear and do so in a manner that is distinct from direct experience. We find that dmPFC neuronal activity predicts upcoming switches between freezing and moving state elicited by threat. By combining neuronal circuit mapping, calcium imaging, electrophysiological recordings and optogenetics, we show that dmPFC projections to the midbrain periaqueductal grey (PAG) constrain observer freezing, and that amygdalar and hippocampal inputs to dmPFC opposingly modulate observer freezing. Together our findings reveal that dmPFC neurons compute a distinct code for observational fear and coordinate long-range neural circuits to select behavioural responses.


Assuntos
Sinais (Psicologia) , Medo , Vias Neurais , Córtex Pré-Frontal , Aprendizado Social , Animais , Camundongos , Tonsila do Cerebelo/fisiologia , Cálcio/metabolismo , Eletrofisiologia , Medo/fisiologia , Hipocampo/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Optogenética , Substância Cinzenta Periaquedutal/citologia , Substância Cinzenta Periaquedutal/fisiologia , Estimulação Luminosa , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Aprendizado Social/fisiologia , Reação de Congelamento Cataléptica/fisiologia
15.
Nat Immunol ; 18(5): 552-562, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28346408

RESUMO

Gut dysbiosis might underlie the pathogenesis of type 1 diabetes. In mice of the non-obese diabetic (NOD) strain, we found that key features of disease correlated inversely with blood and fecal concentrations of the microbial metabolites acetate and butyrate. We therefore fed NOD mice specialized diets designed to release large amounts of acetate or butyrate after bacterial fermentation in the colon. Each diet provided a high degree of protection from diabetes, even when administered after breakdown of immunotolerance. Feeding mice a combined acetate- and butyrate-yielding diet provided complete protection, which suggested that acetate and butyrate might operate through distinct mechanisms. Acetate markedly decreased the frequency of autoreactive T cells in lymphoid tissues, through effects on B cells and their ability to expand populations of autoreactive T cells. A diet containing butyrate boosted the number and function of regulatory T cells, whereas acetate- and butyrate-yielding diets enhanced gut integrity and decreased serum concentration of diabetogenic cytokines such as IL-21. Medicinal foods or metabolites might represent an effective and natural approach for countering the numerous immunological defects that contribute to T cell-dependent autoimmune diseases.


Assuntos
Acetatos/metabolismo , Linfócitos B/imunologia , Butiratos/metabolismo , Colo/metabolismo , Diabetes Mellitus Tipo 1/dietoterapia , Disbiose/dietoterapia , Linfócitos T Reguladores/imunologia , Animais , Autoimunidade , Linfócitos B/microbiologia , Células Cultivadas , Colo/patologia , Dietoterapia , Microbioma Gastrointestinal , Interleucinas/sangue , Camundongos , Camundongos Endogâmicos NOD , Linfócitos T Reguladores/microbiologia
18.
CA Cancer J Clin ; 72(6): 570-593, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35653456

RESUMO

Patients with advanced cancer generate 4 million visits annually to emergency departments (EDs) and other dedicated, high-acuity oncology urgent care centers. Because of both the increasing complexity of systemic treatments overall and the higher rates of active therapy in the geriatric population, many patients experiencing acute decompensations are frail and acutely ill. This article comprehensively reviews the spectrum of oncologic emergencies and urgencies typically encountered in acute care settings. Presentation, underlying etiology, and up-to-date clinical pathways are discussed. Criteria for either a safe discharge to home or a transition of care to the inpatient oncology hospitalist team are emphasized. This review extends beyond familiar conditions such as febrile neutropenia, hypercalcemia, tumor lysis syndrome, malignant spinal cord compression, mechanical bowel obstruction, and breakthrough pain crises to include a broader spectrum of topics encompassing the syndrome of inappropriate antidiuretic hormone secretion, venous thromboembolism and malignant effusions, as well as chemotherapy-induced mucositis, cardiomyopathy, nausea, vomiting, and diarrhea. Emergent and urgent complications associated with targeted therapeutics, including small molecules, naked and drug-conjugated monoclonal antibodies, as well as immune checkpoint inhibitors and chimeric antigen receptor T-cells, are summarized. Finally, strategies for facilitating same-day direct admission to hospice from the ED are discussed. This article not only can serve as a point-of-care reference for the ED physician but also can assist outpatient oncologists as well as inpatient hospitalists in coordinating care around the ED visit.


Assuntos
Hipercalcemia , Neoplasias , Idoso , Humanos , Emergências , Oncologia , Neoplasias/complicações , Neoplasias/terapia , Náusea , Hipercalcemia/etiologia
19.
Am J Hum Genet ; 111(9): 1914-1931, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39079539

RESUMO

A major fraction of loci identified by genome-wide association studies (GWASs) mediate alternative splicing, but mechanistic interpretation is hindered by the technical limitations of short-read RNA sequencing (RNA-seq), which cannot directly link splicing events to full-length protein isoforms. Long-read RNA-seq represents a powerful tool to characterize transcript isoforms, and recently, infer protein isoform existence. Here, we present an approach that integrates information from GWASs, splicing quantitative trait loci (sQTLs), and PacBio long-read RNA-seq in a disease-relevant model to infer the effects of sQTLs on the ultimate protein isoform products they encode. We demonstrate the utility of our approach using bone mineral density (BMD) GWAS data. We identified 1,863 sQTLs from the Genotype-Tissue Expression (GTEx) project in 732 protein-coding genes that colocalized with BMD associations (H4PP ≥ 0.75). We generated PacBio Iso-Seq data (N = ∼22 million full-length reads) on human osteoblasts, identifying 68,326 protein-coding isoforms, of which 17,375 (25%) were unannotated. By casting the sQTLs onto protein isoforms, we connected 809 sQTLs to 2,029 protein isoforms from 441 genes expressed in osteoblasts. Overall, we found that 74 sQTLs influenced isoforms likely impacted by nonsense-mediated decay and 190 that potentially resulted in the expression of unannotated protein isoforms. Finally, we functionally validated colocalizing sQTLs in TPM2, in which siRNA-mediated knockdown in osteoblasts showed two TPM2 isoforms with opposing effects on mineralization but exhibited no effect upon knockdown of the entire gene. Our approach should be to generalize across diverse clinical traits and to provide insights into protein isoform activities modulated by GWAS loci.


Assuntos
Processamento Alternativo , Densidade Óssea , Estudo de Associação Genômica Ampla , Isoformas de Proteínas , Proteogenômica , Locos de Características Quantitativas , Humanos , Isoformas de Proteínas/genética , Densidade Óssea/genética , Processamento Alternativo/genética , Proteogenômica/métodos , Osteoblastos/metabolismo , Polimorfismo de Nucleotídeo Único
20.
CA Cancer J Clin ; 70(5): 375-403, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32683683

RESUMO

Despite tremendous gains in the molecular understanding of exocrine pancreatic cancer, the prognosis for this disease remains very poor, largely because of delayed disease detection and limited effectiveness of systemic therapies. Both incidence rates and mortality rates for pancreatic cancer have increased during the past decade, in contrast to most other solid tumor types. Recent improvements in multimodality care have substantially improved overall survival, local control, and metastasis-free survival for patients who have localized tumors that are amenable to surgical resection. The widening gap in prognosis between patients with resectable and unresectable or metastatic disease reinforces the importance of detecting pancreatic cancer sooner to improve outcomes. Furthermore, the developing use of therapies that target tumor-specific molecular vulnerabilities may offer improved disease control for patients with advanced disease. Finally, the substantial morbidity associated with pancreatic cancer, including wasting, fatigue, and pain, remains an under-addressed component of this disease, which powerfully affects quality of life and limits tolerance to aggressive therapies. In this article, the authors review the current multidisciplinary standards of care in pancreatic cancer with a focus on emerging concepts in pancreatic cancer detection, precision therapy, and survivorship.


Assuntos
Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/terapia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/terapia , Equipe de Assistência ao Paciente , Carcinoma Ductal Pancreático/mortalidade , Quimioterapia Adjuvante , Tomada de Decisão Clínica , Ensaios Clínicos como Assunto , Detecção Precoce de Câncer , Predisposição Genética para Doença , Humanos , Estadiamento de Neoplasias , Pâncreas/diagnóstico por imagem , Pâncreas/patologia , Pancreatectomia , Neoplasias Pancreáticas/mortalidade , Radioterapia Adjuvante , Fatores de Risco , Padrão de Cuidado
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa