RESUMO
BACKGROUND: Drug and contrast agent delivery systems that achieve controlled release in the presence of enzymatic activity are becoming increasingly important, as enzymatic activity is a hallmark of a wide array of diseases, including cancer and atherosclerosis. Here, we have synthesized clusters of ultrasmall superparamagnetic iron oxides (USPIOs) that sense enzymatic activity for applications in magnetic resonance imaging (MRI). To achieve this goal, we utilize amphiphilic poly(propylene sulfide)-bl-poly(ethylene glycol) (PPS-b-PEG) copolymers, which are known to have excellent properties for smart delivery of drug and siRNA. RESULTS: Monodisperse PPS polymers were synthesized by anionic ring opening polymerization of propylene sulfide, and were sequentially reacted with commercially available heterobifunctional PEG reagents and then ssDNA sequences to fashion biofunctional PPS-bl-PEG copolymers. They were then combined with hydrophobic 12 nm USPIO cores in the thin-film hydration method to produce ssDNA-displaying USPIO micelles. Micelle populations displaying complementary ssDNA sequences were mixed to induce crosslinking of the USPIO micelles. By design, these crosslinking sequences contained an EcoRV cleavage site. Treatment of the clusters with EcoRV results in a loss of R2 negative contrast in the system. Further, the USPIO clusters demonstrate temperature sensitivity as evidenced by their reversible dispersion at ~75°C and re-clustering following return to room temperature. CONCLUSIONS: This work demonstrates proof of concept of an enzymatically-actuatable and thermoresponsive system for dynamic biosensing applications. The platform exhibits controlled release of nanoparticles leading to changes in magnetic relaxation, enabling detection of enzymatic activity. Further, the presented functionalization scheme extends the scope of potential applications for PPS-b-PEG. Combined with previous findings using this polymer platform that demonstrate controlled drug release in oxidative environments, smart theranostic applications combining drug delivery with imaging of platform localization are within reach. The modular design of these USPIO nanoclusters enables future development of platforms for imaging and drug delivery targeted towards proteolytic activity in tumors and in advanced atherosclerotic plaques.
Assuntos
Preparações de Ação Retardada/síntese química , Dextranos/química , Nanopartículas de Magnetita/química , Polietilenoglicóis/síntese química , Sulfetos/síntese química , Reagentes de Ligações Cruzadas/química , Micelas , Polietilenoglicóis/químicaRESUMO
INTRODUCTION: Bacterial sepsis is a life-threatening disease and a significant clinical problem caused by host responses to a microbial infection. Sepsis is a leading cause of death worldwide and, importantly, a significant cause of morbidity and mortality in combat settings, placing a considerable burden on military personnel and military health budgets. The current method of treating sepsis is restricted to pathogen identification, which can be prolonged, and antibiotic administration, which is, initially, often suboptimal. The clinical trials that have been performed to evaluate bacterial separation as a sepsis therapy have been unsuccessful, and new approaches are needed to address this unmet clinical need. MATERIALS AND METHODS: An inertial-based, scalable spiral microfluidic device has been created to overcome these previous deficiencies through successful separation of infection-causing pathogens from the bloodstream, serving as a proof of principle for future adaptations. Fluorescent imaging of fluorescent microspheres mimicking the sizes of bacteria cells and blood cells as well as fluorescently stained Acinetobacter baumannii were used to visualize flow within the spiral. The particles were imaged when flowing at a constant volumetric rate of 0.2 mL min-1 through the device. The same device was functionalized with colistin and exposed to flowing A. baumannii at 0.2 mL h-1. RESULTS: Fluorescent imaging within the channel under a constant volumetric flow rate demonstrated that smaller, bacteria-sized microspheres accumulated along the inner wall of the channel, whereas larger blood cell-sized microspheres accumulated within the center of the channel. Additionally, fluorescently stained A. baumannii displayed accumulation along the channel walls in agreement with calculated performance. Nearly 106 colony-forming units of A. baumannii were extracted with 100% capture efficiency from flowing phosphate-buffered saline at 0.2 mL h-1 in this device; this is at least one order of magnitude more bacteria than present in the blood of a human at the onset of sepsis. CONCLUSIONS: This type of bacterial separation device potentially provides an ideal approach for treating soldiers in combat settings. It eliminates the need for immediate pathogen identification and determination of antimicrobial susceptibility, making it suitable for rapid use within low-resource environments. The overall simplicity and durability of this design also supports its broad translational potential to improve military mortality rates and overall patient outcomes.
Assuntos
Patógenos Transmitidos pelo Sangue , Acinetobacter baumannii , Antibacterianos , Colistina , Humanos , Testes de Sensibilidade MicrobianaRESUMO
The intracellular distribution of the enzyme 5-lipoxygenase (5-LO) and 5-lipoxygenase-activating protein (FLAP) in resting and ionophore-activated human leukocytes has been determined using immuno-electronmicroscopic labeling of ultrathin frozen sections and subcellular fractionation techniques. 5-LO is a 78-kD protein that catalyzes the conversion of arachidonic acid to leukotrienes. FLAP is an 18-kD membrane bound protein that is essential for leukotriene synthesis in cells. In response to ionophore stimulation, 5-LO translocates from a soluble to a sedimentable fraction of cell homogenates. In activated leukocytes, both FLAP and 5-LO were localized in the lumen of the nuclear envelope. Neither protein could be detected in any other cell compartment or along the plasma membrane. In resting cells, the FLAP distribution was identical to that observed in activated cells. In addition, subcellular fractionation techniques showed > 83% of immunoblot-detectable FLAP protein and approximately 64% of the FLAP ligand binding activity was found in the nuclear membrane fraction. A fractionation control demonstrated that a plasma membrane marker, detected by a monoclonal antibody PMN13F6, was not detectable in the nuclear membrane fraction. In contrast to FLAP, 5-LO in resting cells could not be visualized along the nuclear envelope. Except for weak labeling of the euchromatin region of the nucleus, 5-LO could not be readily detected in any other cellular compartment. These results demonstrate that the nuclear envelope is the intracellular site at which 5-LO and FLAP act to metabolize arachidonic acid, and that ionophore activation of neutrophils and monocytes results in the translocation of 5-LO from a nonsedimentable location to the nuclear envelope.
Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Monócitos/enzimologia , Neutrófilos/enzimologia , Membrana Nuclear/enzimologia , Proteínas Ativadoras de 5-Lipoxigenase , Western Blotting , Calcimicina/farmacologia , Compartimento Celular , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Monócitos/ultraestrutura , Neutrófilos/ultraestruturaRESUMO
Acinetobacter baumannii is a Gram-negative bacterium of increasing concern due to its virulence and persistence in combat and healthcare environments. The incidence of both community-acquired and nosocomial A. baumannii infections is on the rise in foreign and domestic healthcare facilities. Treatment options are limited due to the acquisition of multidrug resistance to the few effective antibiotics. Currently, the most effective pharmaceutically based treatment for multidrug-resistant A. baumannii infections is the antibiotic colistin (polymyxin E). To minimize side effects associated with administration of colistin or other toxic antimicrobial agents, we propose the development of a nanotechnology-mediated treatment strategy. In this design-based effort, colistin-functionalized multilayered, inorganic, magnetoplasmonic nanoconstructs were fabricated to bind to the surface of A. baumannii. This result, for the first time, demonstrates a robust, pharmaceutical-based motif for high affinity, composite nanoparticulates targeting the A. baumannii surface. The antibiotic-activated nanomaterials demonstrated cytocompatibility with human cells and no acute bacterial toxicity at nanoparticle to bacterial concentrations <10â¯000:1. The magnetomotive characteristics of the nanomaterial enabled magnetic extraction of the bacteria. In a macroscale environment, maximal separation efficiencies exceeding 38% were achieved. This result demonstrates the potential for implementation of this technology into micro- or mesofluidic-based separation environments to enhance extraction efficiencies. The future development of such a mesofluidic-based, nanotechnology-mediated platform is potentially suitable for adjuvant therapies to assist in the treatment of sepsis.
Assuntos
Acinetobacter baumannii , Infecções por Acinetobacter , Antibacterianos , Colistina , Farmacorresistência Bacteriana Múltipla , Compostos Férricos , Humanos , Testes de Sensibilidade MicrobianaRESUMO
The rise of multi-drug resistance has decreased the effectiveness of antibiotics, which has led to increased mortality rates associated with symptomatic bacteremia, or bacterial sepsis. To combat decreasing antibiotic effectiveness, extracorporeal bacterial separation approaches have been proposed to capture and separate bacteria from blood. However, bacteremia is dynamic and involves host-pathogen interactions across various anatomical sites. We developed a mathematical model that quantitatively describes the kinetics of pathogenesis and progression of symptomatic bacteremia under various conditions, including bacterial separation therapy, to better understand disease mechanisms and quantitatively assess the biological impact of bacterial separation therapy. Model validity was tested against experimental data from published studies. This is the first multi-compartment model of symptomatic bacteremia in mammals that includes extracorporeal bacterial separation and antibiotic treatment, separately and in combination. The addition of an extracorporeal bacterial separation circuit reduced the predicted time of total bacteria clearance from the blood of an immunocompromised rodent by 49%, compared to antibiotic treatment alone. Implementation of bacterial separation therapy resulted in predicted multi-drug resistant bacterial clearance from the blood of a human in 97% less time than antibiotic treatment alone. The model also proposes a quantitative correlation between time-dependent bacterial load among tissues and bacteremia severity, analogous to the well-known 'area under the curve' for characterization of drug efficacy. The engineering-based mathematical model developed may be useful for informing the design of extracorporeal bacterial separation devices. This work enables the quantitative identification of the characteristics required of an extracorporeal bacteria separation device to provide biological benefit. These devices will potentially decrease the bacterial load in blood. Additionally, the devices may achieve bacterial separation rates that allow consequent acceleration of bacterial clearance in other tissues, inhibiting the progression of symptomatic bacteremia, including multi-drug resistant variations.
RESUMO
Gold nanoparticles (AuNPs) were functionalized for rapid binding of Acinetobacter baumannii (A. baumannii), a Gram-negative bacterium. AuNPs were functionalized with colistin (Col), a polycationic antibiotic, using a two-step self-assembly process, in which heterobifunctional polyethylene glycol (PEG) was used as a linker. Colistin was successfully conjugated to the AuNPs (Col-PEG-AuNP), as validated by dynamic light scattering (DLS) and proton nuclear magnetic resonance (H1 NMR). High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images, acquired simultaneously with X-ray energy dispersive spectroscopy (EDS) data, confirmed binding of Col-PEG-AuNPs to the cell envelope of A. baumannii. Results generated from a binding assay indicated that Col-PEG-AuNP complexation with A. baumannii occurred rapidly and reached half-maximum saturation in approximately 7 minutes, on average, for all A. baumannii strains evaluated. Quantitative measurement of the kinetics of Col-PEG-AuNP binding to A. baumannii is essential to inform the design of colistin-functionalized magnetic nanoparticles for magnetic separation of nanoparticle-bound A. baumannii.
Assuntos
Acinetobacter baumannii/isolamento & purificação , Técnicas Bacteriológicas/métodos , Separação Celular/métodos , Colistina/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Acinetobacter baumannii/química , Acinetobacter baumannii/metabolismo , Colistina/químicaRESUMO
Both (12R)- and (12S)-hydroxyeicosatetraenoic acid were demonstrated to produce aggregation of rat leukocytes and enhance human leukocyte chemokinesis. (12R)-Hydroxyeicosatetraenoic acid was 10-20-fold more potent than (12S)-hydroxyeicosatetraenoic acid but at least 500-fold less potent than leukotriene B4 in these assays. These relative potencies are correlated with the potencies of (12R)- and (12S)-hydroxyeicosatetraenoic acid for competition of [3H]leukotriene B4 binding to rat and human leukocyte membrane preparations.
Assuntos
Ácidos Hidroxieicosatetraenoicos/farmacologia , Leucócitos/metabolismo , Leucotrieno B4/sangue , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Animais , Sítios de Ligação/efeitos dos fármacos , Ligação Competitiva , Agregação Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Quimiotaxia de Leucócito/efeitos dos fármacos , Humanos , Ácidos Hidroxieicosatetraenoicos/sangue , Técnicas In Vitro , Leucócitos/efeitos dos fármacos , Masculino , Ratos , Ratos Endogâmicos , EstereoisomerismoRESUMO
5-Lipoxygenase-activating protein (FLAP) is an 18-kDa integral membrane protein which is essential for cellular leukotriene (LT) synthesis, and is the target of LT biosynthesis inhibitors. However, the mechanism by which FLAP activates 5-LO has not been determined. We have expressed high levels of human FLAP in Spodoptera frugiperda (Sf9) insect cells infected with recombinant baculovirus, and used this system to demonstrate that FLAP specifically binds [125I]L-739,059, a novel photoaffinity analog of arachidonic acid. This binding is inhibited by both arachidonic acid and MK-886, an LT biosynthesis inhibitor which specifically interacts with FLAP. These studies suggest that FLAP may activate 5-LO by specifically binding arachidonic acid and transferring this substrate to the enzyme.
Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Ativadoras de 5-Lipoxigenase , Marcadores de Afinidade , Animais , Araquidonato 5-Lipoxigenase/metabolismo , Ácidos Araquidônicos/metabolismo , Baculoviridae/genética , Proteínas de Transporte/genética , Linhagem Celular , Ativação Enzimática , Expressão Gênica , Humanos , Indóis/metabolismo , Radioisótopos do Iodo/metabolismo , Proteínas de Membrana/genética , Mariposas/metabolismo , Fotoquímica , Quinolinas/metabolismo , Proteínas Recombinantes/metabolismo , TransfecçãoRESUMO
A study has been made of the inactivation of mu(mu) ([3H]-dihydromorphine), delta (delta) ([3H](D-ala2-D-leu5)enkephalin) and kappa (kappa) ([3H]ethylketazocine) opiate receptor binding sites by N-ethylmaleimide (NEM) and it was observed that in contrast to mu and delta sites, the kappa sites of rat brain membrane preparations were resistant to low concentrations of N-ethylmaleimide. Furthermore, this kappa site was selectively protected, from inactivation with high concentrations of N-ethylmaleimide, by the kappa agonists ethylketazocine and (-)-alpha-(1R,5R,9R)-5,9-dimethyl-2-(L-tetrahydrofurfuryl)-2'-hydroxy-6,7-benzo morphan (MR-2034) but not by morphine or (D-ala2-D-leu5)-enkephalin. These studies suggest that a unique kappa receptor is present in the rat CNS.
Assuntos
Analgésicos Opioides/metabolismo , Ciclazocina/análogos & derivados , Receptores Opioides/metabolismo , Animais , Ciclazocina/metabolismo , Encefalinas/farmacologia , Etilcetociclazocina , Etilmaleimida/farmacologia , Ratos , Receptores Opioides/análise , Receptores Opioides/efeitos dos fármacos , TrítioRESUMO
The N-arginyl derivative of methionine-enkephalin (fragment 60-65 of beta-lipotropin) has been shown to be equiactive with the parent pentapeptide, despite the fact that the tyrosine amino group in this compound has been neutralized by the formation of an amide linkage. A series of N-(amino acid) derivatives of (-)-5,9 alpha-diethyl-2'-hydroxybenzomorphan was prepared and evaluated for analgesic activity. In vitro activities were found to vary greatly, depending on the nature of the amino acid used. The N-arginyl derivative was found to be equipotent to (-)-5,9 alpha-diethyl-2'hydroxybenzomorphan and also to methionine-enkephaline in the naloxone binding assay.
Assuntos
Analgésicos/síntese química , Benzomorfanos/síntese química , Morfinanos/síntese química , Aminoácidos , Animais , Benzomorfanos/análogos & derivados , Benzomorfanos/metabolismo , Benzomorfanos/farmacologia , Ligação Competitiva , Encéfalo/metabolismo , Fenômenos Químicos , Química , Técnicas In Vitro , Membranas/metabolismo , Naloxona/metabolismo , Ratos , Receptores Opioides/efeitos dos fármacosRESUMO
The attachment of an arylacetic or benzoic acid moiety to the thiopyrano[2,3,4-c,d]indole nucleus results in compounds which are highly potent and selective 5-lipoxygenase (5-LO) inhibitors. These compounds are structurally simpler than previous compounds of similar potency in that they contain a single chiral center. From the data presented, 2-[[1-(3-chlorobenzyl)-4-methyl-6-[(5-phenylpyridin-2-yl)methoxy]- 4, 5-dihydro-1H-thiopyrano[2,3,4-c,d]indol-2-yl]methoxy]-phenylacetic acid, 14b, was shown to inhibit 5-hydroperoxyeicosatetraenoic acid (5-HPETE) production by human 5-LO (IC50 of 18 nM). The acid 14b is highly selective as an inhibitor of 5-LO activity when compared to the inhibition of ram seminal vesicle cyclooxygenase (IC50 > 5 microM) or human leukocyte leukotriene A4 (LTA4) hydrolase (IC50 > 20 microM). In addition, 14b was inactive in a 5-lipoxygenase-activating protein (FLAP) binding assay at 10 microM. In vivo studies showed that 14b is bioavailable in rat and functionally active in the hyperreactive rat model of antigen-induced dyspnea (74% inhibition at 0.5 mk/kg po; 2 h pretreatment). In the conscious squirrel monkey model of asthma, 14b showed excellent functional activity at 0.1 mg/kg against antigen-induced bronchoconstriction (94% inhibition of the increase in RL and 100% inhibition in the decrease in Cdyn; n = 4). Resolution of this compound gave (-)-14b, the most potent enantiomer (IC50 = 10 nM in the human 5-LO assay), which was shown to possess the S configuration at the chiral center by X-ray crystallographic analysis of an intermediate. Subsequent studies on the aryl thiopyrano[2,3,4-c,d]indole series of inhibitors led to the discovery of potent dual inhibitors of both FLAP and 5-LO, the most potent of which is 2-[[1-(4-chlorobenzyl)-4-methyl-6-(quinolin-2-ylmethoxy)-4, 5-dihydro-1H-thiopyrano[2,3,4-c,d]indol-2-yl]methoxy]phenylacetic acid, 19. Acid 19 has an IC50 of 100 nM for the inhibition of 5-HPETE production by human 5-LO and is active in a FLAP binding assay with an IC50 of 32 nM. Furthermore, thiopyrano[2,3,4-c,d]indoles such as 1 and 14b are capable of inhibiting the LTC4 synthase reaction in a dose dependent manner (IC50s of 11 and 16 microM, respectively, compared to that of LTC2 at 1.2 microM) in contrast to other, structurally distinct 5-LO inhibitors. It has also been observed that the thiopyrano[2,3,4-c,d]indole class of compounds strongly promotes the translocation of 5-LO from the cytosol to a membrane fraction in the presence or absence of the ionophore A23187.(ABSTRACT TRUNCATED AT 400 WORDS)
Assuntos
Proteínas de Transporte/antagonistas & inibidores , Glutationa Transferase/antagonistas & inibidores , Indóis/farmacologia , Inibidores de Lipoxigenase , Proteínas de Membrana/antagonistas & inibidores , Proteínas Ativadoras de 5-Lipoxigenase , Animais , Ácido Araquidônico/metabolismo , Broncoconstrição/efeitos dos fármacos , Calcimicina/farmacologia , Cristalografia por Raios X , Modelos Animais de Doenças , Haplorrinos , Humanos , Indóis/síntese química , Indóis/química , Masculino , Modelos Moleculares , Ratos , Glândulas Seminais/enzimologia , OvinosRESUMO
Cyclopentenones containing a 4-(methylsulfonyl)phenyl group in the 3-position and a phenyl ring in the 2-position are selective inhibitors of cyclooxygenase-2 (COX-2). The selectivity for COX-2 over COX-1 is dramatically improved by substituting the 2-phenyl group with halogens in the meta position or by replacing the phenyl ring with a 2- or 3-pyridyl ring. Thus the 3,5-difluorophenyl derivative 7 (L-776,967) and the 3-pyridyl derivative 13 (L-784,506) are particularly interesting as potential antiinflammatory agents with reduced side-effect profiles. Both exhibit good oral bioavailability and are potent in standard models of pain, fever, and inflammation yet have a much reduced effect on the GI integrity of rats compared to standard nonsteroidal antiflammatory drugs.
Assuntos
Inibidores de Ciclo-Oxigenase/síntese química , Ciclopentanos/síntese química , Isoenzimas/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Sulfonas/síntese química , Analgésicos não Narcóticos/síntese química , Analgésicos não Narcóticos/química , Analgésicos não Narcóticos/farmacologia , Analgésicos não Narcóticos/toxicidade , Animais , Artrite Experimental/tratamento farmacológico , Disponibilidade Biológica , Células CHO , Carragenina/toxicidade , Linhagem Celular , Cricetinae , Ciclo-Oxigenase 1 , Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/toxicidade , Ciclopentanos/química , Ciclopentanos/farmacologia , Ciclopentanos/toxicidade , Sistema Digestório/efeitos dos fármacos , Edema/induzido quimicamente , Edema/tratamento farmacológico , Feminino , Febre/tratamento farmacológico , Humanos , Hiperalgesia/tratamento farmacológico , Masculino , Proteínas de Membrana , Microssomos/enzimologia , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Sulfonas/química , Sulfonas/farmacologia , Sulfonas/toxicidade , TransfecçãoRESUMO
1. DFU (5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulphonyl)phenyl-2(5H)-furan one) was identified as a novel orally active and highly selective cyclo-oxygenase-2 (COX-2) inhibitor. 2. In CHO cells stably transfected with human COX isozymes, DFU inhibited the arachidonic acid-dependent production of prostaglandin E2 (PGE2) with at least a 1,000 fold selectivity for COX-2 (IC50 = 41 +/- 14 nM) over COX-1 (IC50 > 50 microM). Indomethacin was a potent inhibitor of both COX-1 (IC50 = 18 +/- 3 nM) and COX-2 (IC50 = 26 +/- 6 nM) under the same assay conditions. The large increase in selectivity of DFU over indomethacin was also observed in COX-1 mediated production of thromboxane B2 (TXB2) by Ca2+ ionophore-challenged human platelets (IC50 > 50 microM and 4.1 +/- 1.7 nM, respectively). 3. DFU caused a time-dependent inhibition of purified recombinant human COX-2 with a Ki, value of 140 +/- 68 microM for the initial reversible binding to enzyme and a kappa 2 value of 0.11 +/- 0.06 s-1 for the first order rate constant for formation of a tightly bound enzyme-inhibitor complex. Comparable values of 62 +/- 26 microM and 0.06 +/- 0.01 s-1, respectively, were obtained for indomethacin. The enzyme-inhibitor complex was found to have a 1:1 stoichiometry and to dissociate only very slowly (t1/2 = 1-3 h) with recovery of intact inhibitor and active enzyme. The time-dependent inhibition by DFU was decreased by co-incubation with arachidonic acid under non-turnover conditions, consistent with reversible competitive inhibition at the COX active site. 4. Inhibition of purified recombinant human COX-1 by DFU was very weak and observed only at low concentrations of substrate (IC50 = 63 +/- 5 microM at 0.1 microM arachidonic acid). In contrast to COX-2, inhibition was time-independent and rapidly reversible. These data are consistent with a reversible competitive inhibition of COX-1. 5. DFU inhibited lipopolysaccharide (LPS)-induced PGE2 production (COX-2) in a human whole blood assay with a potency (IC50 = 0.28 +/- 0.04 microM) similar to indomethacin (IC50 = 0.68 +/- 0.17 microM). In contrast, DFU was at least 500 times less potent (IC50 > 97 microM) than indomethacin at inhibiting coagulation-induced TXB2 production (COX-1) (IC50 = 0.19 +/- 0.02 microM). 6. In a sensitive assay with U937 cell microsomes at a low arachidonic acid concentration (0.1 microM), DFU inhibited COX-1 with an IC50 value of 13 +/- 2 microM as compared to 20 +/- 1 nM for indomethacin. CGP 28238, etodolac and SC-58125 were about 10 times more potent inhibitors of COX-1 than DFU. The order of potency of various inhibitors was diclofenac > indomethacin approximately naproxen > nimesulide approximately meloxicam approximately piroxicam > NS-398 approximately SC-57666 > SC-58125 > CGP 28238 approximately etodolac > L-745,337 > DFU. 7. DFU inhibited dose-dependently both the carrageenan-induced rat paw oedema (ED50 of 1.1 mg kg-1 vs 2.0 mg kg-1 for indomethacin) and hyperalgesia (ED50 of 0.95 mg kg-1 vs 1.5 mg kg-1 for indomethacin). The compound was also effective at reversing LPS-induced pyrexia in rats (ED50 = 0.76 mg kg-1 vs 1.1 mg kg-1 for indomethacin). 8. In a sensitive model in which 51Cr faecal excretion was used to assess the integrity of the gastrointestinal tract in rats, no significant effect was detected after oral administration of DFU (100 mg kg-1, b.i.d.) for 5 days, whereas chromium leakage was observed with lower doses of diclofenac (3 mg kg-1), meloxicam (3 mg kg-1) or etodolac (10-30 mg kg-1). A 5 day administration of DFU in squirrel monkeys (100 mg kg-1) did not affect chromium leakage in contrast to diclofenac (1 mg kg-1) or naproxen (5 mg kg-1). 9. The results indicate that COX-1 inhibitory effects can be detected for all selective COX-2 inhibitors tested by use of a sensitive assay at low substrate concentration. The novel inhibitor DFU shows the lowest inhibitory potency against COX-1, a consistent high selectivity of inhibition of COX-2 over COX-1 (>300 fold) with enzyme, whole cell and whole blood assays, with no detectable loss of integrity of the gastrointestinal tract at doses >200 fold higher than efficacious doses in models of inflammation, pyresis and hyperalgesia. These results provide further evidence that prostanoids derived from COX-1 activity are not important in acute inflammatory responses and that a high therapeutic index of anti-inflammatory effect to gastropathy can be achieved with a selective COX-2 inhibitor.
Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Furanos/farmacologia , Isoenzimas/metabolismo , Peroxidases/antagonistas & inibidores , Prostaglandina-Endoperóxido Sintases/metabolismo , Administração Oral , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/uso terapêutico , Células CHO/citologia , Células CHO/efeitos dos fármacos , Cricetinae , Ciclo-Oxigenase 1 , Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase/administração & dosagem , Inibidores de Ciclo-Oxigenase/uso terapêutico , Sistema Digestório/efeitos dos fármacos , Dinoprostona/biossíntese , Relação Dose-Resposta a Droga , Edema/tratamento farmacológico , Febre/tratamento farmacológico , Furanos/administração & dosagem , Furanos/uso terapêutico , Humanos , Hiperalgesia/tratamento farmacológico , Indometacina/toxicidade , Isoenzimas/sangue , Isoenzimas/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Masculino , Proteínas de Membrana , Peroxidases/metabolismo , Prostaglandina-Endoperóxido Sintases/sangue , Prostaglandina-Endoperóxido Sintases/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Saimiri , Relação Estrutura-Atividade , Tromboxano B2/biossíntese , TransfecçãoRESUMO
The metabolism of leukotrienes (LT) in the sheep was investigated to define markers of 5-lipoxygenase involvement in allergic responses, obtainable by noninvasive techniques. Intravenous administration of 14, 15-[3H]LTC4 (0.5 microCi/kg) revealed a rapid clearance from the circulation (half time = 90 s). Circulatory metabolism was apparent, with early formation (within 1 min) of LTD4 and LTE4 shown by reverse-phase high-pressure liquid chromatography (RP-HPLC). Urinary 3H excretion comprised 10% of the original dose. [3H]LTE4 (characterized by coelution with authentic standards during RP-HPLC analysis) was observed in early urine samples. By use of a sensitive and specific RP-HPLC radioimmunoassay analysis, immunoreactive material coeluting with LTE4 was detected in urine from allergic sheep. Excretion of this material was significantly increased during antigen-induced acute bronchoconstriction in eight conscious allergic sheep [preantigen, 65.70 +/- 24.27 (SE) pg; 0-1 h postantigen, 208.00 +/- 71.10 pg, P less than 0.05], but not during late responses. However, total postantigen LTE4 excretion (37.8 - 956.1 pg/8 h) was highly correlated (r = 0.976, P less than 0.001) with the severity of bronchoconstriction (445.3 - 2,409.1% specific pulmonary resistance per hour) assessed by measurement of the area under the curve of pulmonary function plotted against time. These findings represent an important demonstration of in vivo allergen-induced peptide LT generation in a physiologically characterized animal model of prolonged allergic bronchoconstriction and further substantiate an important role for LT in this model of allergic asthma.
Assuntos
Brônquios/fisiopatologia , Hipersensibilidade Respiratória/urina , SRS-A/análogos & derivados , Animais , Antígenos de Helmintos/imunologia , Ascaris/imunologia , Cromatografia Líquida de Alta Pressão , Constrição Patológica/imunologia , Constrição Patológica/urina , Cinética , Leucotrieno E4 , Hipersensibilidade Respiratória/imunologia , SRS-A/sangue , SRS-A/urina , OvinosRESUMO
The role of leukotrienes as mediators of microvascular permeability changes (assessed through the accumulation of [99mTc]albumin) associated with immediate hypersensitivity reactions in the guinea-pig conjunctiva was investigated by means of two novel, structurally dissimilar 5-lipoxygenase inhibitors, L-651,392 and L-651,896. Both compounds, when applied topically in vivo to the eyes of sensitized guinea-pigs as a 0.1% suspension significantly inhibited 5-lipoxygenase in the conjunctiva as assessed by ex vivo challenge with either antigen or ionophore A23187 and measurement of the release of leukotriene B4-immunoreactive material. Topical application of antigen (either single challenge or 2 challenges separated by 24 h) to the eyes of sensitized guinea-pigs produced changes in conjunctival permeability which were blocked in part by either mepyramine (H1-receptor antagonist) or the 5-lipoxygenase inhibitors. Combinations of mepyramine and L-651,896 resulted in near complete suppression of the permeability response, suggesting that the reaction is mediated only by histamine and leukotrienes.
Assuntos
Araquidonato Lipoxigenases/antagonistas & inibidores , Conjuntivite Alérgica/fisiopatologia , Leucotrieno B4/fisiologia , Inibidores de Lipoxigenase , SRS-A/fisiologia , Animais , Benzofuranos/farmacologia , Calcimicina/farmacologia , Permeabilidade Capilar/efeitos dos fármacos , Conjuntivite Alérgica/imunologia , Cobaias , Masculino , Fenotiazinas/farmacologia , Pirilamina/farmacologiaRESUMO
5-Lipoxygenase-activating protein is required for cellular leukotriene synthesis and is the target of the leukotriene biosynthesis inhibitors MK-886 (3-[1-(p-chlorophenyl)-5-isopropyl-3-tert-butylthio-1H- indol-2-yl]-2,2-dimethylpropanoic acid) and MK-591 (3-[1-(4-chlorobenzyl)-3-(t-butylthio)-5-(quinolin-2-ylmethoxy)-indol-2-yl] - 2,2-dimethylpropanoic acid). Recent studies demonstrate that 5-lipoxygenase-activating protein binds arachidonic acid and stimulates the utilization of this substrate by 5-lipoxygenase. The present study utilizes a radioligand binding assay to assess the affinity of 5-lipoxygenase-activating protein for arachidonic acid and the specificity of the fatty acid binding site on 5-lipoxygenase-activating protein. Our findings demonstrate that the presence of a free carboxyl group on fatty acids or leukotriene biosynthesis inhibitors which interact with 5-lipoxygenase-activating protein is not required for specific binding to the protein. However, the degree of saturation significantly affects the affinity of fatty acids for 5-lipoxygenase-activating protein.
Assuntos
Ácido Araquidônico/metabolismo , Proteínas de Transporte/metabolismo , Leucócitos/metabolismo , Proteínas de Membrana/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Proteínas Ativadoras de 5-Lipoxigenase , Sítios de Ligação/efeitos dos fármacos , Proteínas de Transporte/química , Humanos , Ácidos Hidroxieicosatetraenoicos/farmacologia , Indóis/metabolismo , Leucotrienos/biossíntese , Proteínas de Membrana/química , Quinolinas/metabolismo , Ensaio RadioliganteRESUMO
Site-directed mutagenesis was used to develop deletion and point mutants of human 5-lipoxygenase-activating protein (FLAP), which were then expressed in COS-7 cells. Membrane preparations from these cells were analyzed in a radioligand binding assay. Binding of leukotriene biosynthesis inhibitors to FLAP mutants containing deletions of 2 to 6 amino acids within the region from residue 48-61 was undetectable. This finding is consistent with previous studies which suggest that residues amino-terminal to the proposed second transmembrane of FLAP are critical for inhibitor binding. The present study also defines residues of FLAP a) amino-terminal to residue 48, b) between the proposed second and third transmembrane regions and c) in the C-terminal region of the protein which are not involved in inhibitor binding.
Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Antagonistas de Leucotrienos , Leucotrienos/biossíntese , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutagênese Sítio-Dirigida/genética , Proteínas Ativadoras de 5-Lipoxigenase , Sequência de Aminoácidos , Animais , Células Cultivadas , Humanos , Immunoblotting , Indóis/metabolismo , Radioisótopos do Iodo , Dados de Sequência Molecular , Mutação Puntual/genética , Quinolinas/metabolismo , Ensaio RadioliganteRESUMO
As quantum dot (QD) bioconjugates are increasingly being used for biomedical in vitro and in vivo studies, validated methods for the quantitative determination of QD concentration are of considerable potential value. In this work, we have assessed inductively coupled plasma mass spectrometry (ICP-MS) as a method for the quantitative detection of QDs and QD bioconjugates. We have established a linear relationship between the concentration of unconjugated QD and the mass of cadmium, selenium and zinc detected by ICP-MS. Furthermore, ICP-MS was used to quantitatively estimate the unknown concentration of a QD-antibody bioconjugate. Quantitative measurement of QD bioconjugate concentration was also attempted by optical methods, including fluorescence and absorbance, and compared to ICP-MS. Consistent with previous literature, the fluorescence of the nanoparticle construct was reduced after functionalization with a biomolecule (biotin or streptavidin). Optical absorbance of the QD is unaffected by chemical modifications in this study and is a reliable method to determine the concentration. Optical absorption in this application achieves nanomolar concentrations but is not suitable for most biomedical studies that require a nanoparticle detection limit in the sub-nanomolar region. Unlike optical absorbance and fluorescence, ICP-MS can reliably detect the concentration of QD bioconjugates in the nanomolar range, making ICP-MS a quantitative, sensitive method for QD concentration measurements even after surface conjugation and consequent changes in fluorescence characteristics.