RESUMO
C3 glomerulopathy (C3G) is a rare disease resulting from dysregulation of the alternative pathway of complement. C3G includes C3 glomerulonephritis (C3GN) and dense deposit disease (DDD), both of which are characterized by bright glomerular C3 staining on immunofluorescence studies. However, on electron microscopy (EM), DDD is characterized by dense osmiophilic mesangial and intramembranous deposits along the glomerular basement membranes (GBM), while the deposits of C3GN are not dense. Why the deposits appear dense in DDD and not in C3GN is not known. We performed laser microdissection (LCM) of glomeruli followed by mass spectrometry (MS) in 12 cases each of DDD, C3GN, and pretransplant kidney control biopsies. LCM/MS showed marked accumulation of complement proteins C3, C5, C6, C7, C8, C9 and complement regulating proteins CFHR5, CFHR1, and CFH in C3GN and DDD compared to controls. C3, CFH and CFHR proteins were comparable in C3GN and DDD. Yet, there were significant differences. First, there was a six-to-nine-fold increase of C5-9 in DDD compared to C3GN. Secondly, an unexpected finding was a nine-fold increase in apolipoprotein E (ApoE) in DDD compared to C3GN. Most importantly, immunohistochemical and confocal staining for ApoE mirrored the dense deposit staining in the GBM in DDD but not in C3GN or control cases. Validation studies using 31 C3G cases confirmed the diagnosis of C3GN and DDD in 80.6 % based on ApoE staining. Overall, there is a higher burden of terminal complement pathway proteins in DDD compared to C3GN. Thus, our study shows that dense deposits in DDD are enriched with ApoE compared to C3GN and control cases. Hence, ApoE staining may be used as an adjunct to EM for the diagnosis of DDD and might be valuable when EM is not available.
Assuntos
Glomerulonefrite Membranoproliferativa , Glomerulonefrite , Humanos , Glomerulonefrite Membranoproliferativa/patologia , Glomerulonefrite/patologia , Glomérulos Renais/patologia , Apolipoproteínas E/genética , ApolipoproteínasRESUMO
BACKGROUND: Cell surface proteins perform critical functions related to immune response, signal transduction, cell-cell interactions, and cell migration. Expression of specific cell surface proteins can determine cell-type identity, and can be altered in diseases including infections, cancer and genetic disorders. Identification of the cell surface proteome remains a challenge despite several enrichment methods exploiting their biochemical and biophysical properties. METHODS: Here, we report a novel method for enrichment of proteins localized to cell surface. We developed this new approach designated surface Biotinylation Site Identification Technology (sBioSITe) by adapting our previously published method for direct identification of biotinylated peptides. In this strategy, the primary amine groups of lysines on proteins on the surface of live cells are first labeled with biotin, and subsequently, biotinylated peptides are enriched by anti-biotin antibodies and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: By direct detection of biotinylated lysines from PC-3, a prostate cancer cell line, using sBioSITe, we identified 5851 peptides biotinylated on the cell surface that were derived from 1409 proteins. Of these proteins, 533 were previously shown or predicted to be localized to the cell surface or secreted extracellularly. Several of the identified cell surface markers have known associations with prostate cancer and metastasis including CD59, 4F2 cell-surface antigen heavy chain (SLC3A2) and adhesion G protein-coupled receptor E5 (CD97). Importantly, we identified several biotinylated peptides derived from plectin and nucleolin, both of which are not annotated in surface proteome databases but have been shown to have aberrant surface localization in certain cancers highlighting the utility of this method. CONCLUSIONS: Detection of biotinylation sites on cell surface proteins using sBioSITe provides a reliable method for identifying cell surface proteins. This strategy complements existing methods for detection of cell surface expressed proteins especially in discovery-based proteomics approaches.
RESUMO
Oral lichen planus (OLP) confers an approximately 1% risk of transformation to oral squamous cell carcinoma (OSCC). Early identification of high-risk OLP would be very helpful for optimal patient management. We aimed to discover specific tissue-based protein biomarkers in patients with OLP who developed OSCC compared to those who did not. We used laser capture microdissection- and nanoLC-tandem mass spectrometry to assess protein expression in fixed lesional mucosal specimens in patients with indolent OLP (no OSCC after at least 5-year follow-up, n = 6), transforming OLP (non-dysplastic epithelium with lichenoid inflammation marginal to OSCC, n = 6) or normal oral mucosa (NOM, n = 5). Transforming OLP protein profile was enriched for actin cytoskeleton, mitochondrial dysfunction and oxidative phosphorylation pathways. CA1, TNNT3, SYNM and MB were overexpressed, and FBLN1 was underexpressed in transforming OLP compared with indolent OLP. Integrin signalling and antigen presentation pathways were enriched in both indolent and transforming OLP compared with NOM. This proteomic study provides potential biomarkers, such as CA1 overexpression, for higher-risk OLP. While further validation studies are needed, we propose that epithelial-mesenchymal transition may be involved in OLP carcinogenesis.
Assuntos
Carcinoma de Células Escamosas , Líquen Plano Bucal , Neoplasias Bucais , Humanos , Neoplasias Bucais/metabolismo , Líquen Plano Bucal/metabolismo , Carcinoma de Células Escamosas/metabolismo , Proteômica , BiomarcadoresRESUMO
Vulvar lichen planus (VLP) is a chronic inflammatory disease which adversely affects patients' quality of life. The pathogenesis of VLP is unknown although Th1 immune response has been implicated. We aimed to discover specific tissue-based protein biomarkers in VLP compared to normal vulvar tissue (NVT), vulvar lichen sclerosus (VLS) and oral lichen planus (OLP). We used laser capture microdissection-liquid chromatography- tandem mass spectrometry to assess protein expression in fixed lesional mucosal specimens from patients with VLP (n = 5). We then compared proteomic profiles against those of NVT (n = 4), VLS (n = 5), OLP (n = 6) and normal oral mucosa (n = 5), previously published by our group. IL16, PTPRC, PTPRCAP, TAP1 and ITGB2 and were significantly overexpressed in VLP compared to NVT. Ingenuity pathway analysis identified antigen presentation and integrin signalling pathways. Proteins overexpressed in both VLP versus NVT and OLP versus NOM included IL16, PTPRC, PTPRCAP, TAP1, HLA-DPB1, HLA-B and HLA-DRA. This proteomic analysis revealed several overexpressed proteins in VLP that relate to Th1 autoimmunity, including IL16. Overlapping pathways, including those involving IFNγ and Th1 signalling, were observed between VLP, VLS, and OLP.
Assuntos
Líquen Plano Bucal , Líquen Plano , Líquen Escleroso Vulvar , Feminino , Humanos , Líquen Escleroso Vulvar/patologia , Interleucina-16 , Proteômica , Qualidade de Vida , Líquen Plano/patologia , Mucosa BucalRESUMO
BACKGROUND: Membranous nephropathy (MN) is a common cause of proteinuria in patients receiving a hematopoietic stem cell transplant (HSCT). The target antigen in HSCT-associated MN is unknown. METHODS: We performed laser microdissection and tandem mass spectrometry (MS/MS) of glomeruli from 250 patients with PLA2R-negative MN to detect novel antigens in MN. This was followed by immunohistochemical (IHC)/immunofluorescence (IF) microscopy studies to localize the novel antigen. Western blot analyses using serum and IgG eluted from frozen biopsy specimen to detect binding of IgG to new 'antigen'. RESULTS: MS/MS detected a novel protein, protocadherin FAT1 (FAT1), in nine patients with PLA2R-negative MN. In all nine patients, MN developed after allogeneic HSCT (Mayo Clinic discovery cohort). Next, we performed MS/MS in five patients known to have allogeneic HSCT-associated MN (Cedar Sinai validation cohort). FAT1 was detected in all five patients by MS/MS. The total spectral counts for FAT1 ranged from 8 to 39 (mean±SD, 20.9±10.1). All 14 patients were negative for known antigens of MN, including PLA2R, THSD7A, NELL1, PCDH7, NCAM1, SEMA3B, and HTRA1. Kidney biopsy specimens showed IgG (2 to 3+) with mild C3 (0 to 1+) along the GBM; IgG4 was the dominant IgG subclass. IHC after protease digestion and confocal IF confirmed granular FAT1 deposits along the GBM. Lastly, Western blot analyses detected anti-FAT1 IgG and IgG4 in the eluate obtained from pooled frozen kidney biopsy tissue and in the serum of those with FAT1-asssociated MN, but not from those with PLA2R-associated MN. CONCLUSIONS: FAT1-associated MN appears to be a unique type of MN associated with HSCT. FAT1-associated MN represents a majority of MN associated with HSCT.
Assuntos
Glomerulonefrite Membranosa , Transplante de Células-Tronco Hematopoéticas , Autoanticorpos , Caderinas , Feminino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Humanos , Imunoglobulina G , Masculino , Protocaderinas , Receptores da Fosfolipase A2 , Espectrometria de Massas em TandemRESUMO
Tubular basement membrane (TBM) deposits are very uncommon in non-lupus membranous nephropathy. We report 5 patients with membranous nephropathy and extensive TBM deposits following allogeneic hematopoietic cell transplant. Patients presented with nephrotic syndrome (3 also had acute kidney injury) late post-transplant in association with chronic graft-versus-host disease (cGVHD). Kidney biopsies revealed global subepithelial and extensive TBM immune complex deposits, accompanied by acute tubular injury (n = 4) and tubulointerstitial inflammation (n = 4). Proteomic analysis of glomeruli in 4 cases identified PLA2R in 1, with no significant protein spectra for PLA2R, THSD7A, EX1/2, NELL-1, PCDH7, NCAM1, or SEMA3B detected in the remaining 3. On follow-up (for a mean 42 months), 4 patients had complete and 1 partial remission following prednisone and/or rituximab therapy. We propose that membranous nephropathy with extensive TBM deposits is a distinctive clinicopathologic lesion associated with allogeneic hematopoietic cell transplant. Pathogenesis likely involves cGVHD-driven antibodies against glomerular and TBM components, the identity of which remains to be elucidated.
Assuntos
Injúria Renal Aguda , Glomerulonefrite Membranosa , Transplante de Células-Tronco Hematopoéticas , Membrana Basal/patologia , Glomerulonefrite Membranosa/patologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Poliésteres , ProteômicaRESUMO
Vulvar lichen sclerosus (VLS) confers approximately 3% risk of malignant transformation to vulvar squamous cell carcinoma (VSCC). We used unbiased proteomic methods to identify differentially expressed proteins in tissue of patients with VLS who developed VSCC compared to those who did not. We used laser capture microdissection- and nanoLC-tandem mass spectrometry to assess protein expression in individuals in normal vulvar tissue (NVT, n = 4), indolent VLS (no VSCC after at least 5 years follow-up, n = 5) or transforming VSCC (preceding VSCC, n = 5). Interferon-γ and antigen-presenting pathways are overexpressed in indolent and transforming VLS compared to NVT. There was differential expression of malignancy-related proteins in transforming VLS compared to indolent VLS (CAV1 overexpression, AKAP12 underexpression), particularly in the EIF2 translation pathway, which has been previously implicated in carcinogenesis. Results of this study provide additional molecular evidence supporting the concept that VLS is a risk factor for VSCC and highlights possible future biomarkers and/or therapeutic targets.
Assuntos
Carcinoma de Células Escamosas , Líquen Escleroso Vulvar , Neoplasias Vulvares , Feminino , Humanos , Líquen Escleroso Vulvar/complicações , Líquen Escleroso Vulvar/metabolismo , Líquen Escleroso Vulvar/patologia , Proteômica , Neoplasias Vulvares/patologia , Transformação Celular Neoplásica , Carcinoma de Células Escamosas/metabolismoRESUMO
Promoting seed decay is an ecological approach to reducing weed persistence in the soil seedbank. Previous work demonstrated that Fusarium avenaceum F.a.1 decays dormant Avena fatua (wild oat) caryopses and induces several defense enzyme activities in vitro. The objectives of this study were to obtain a global perspective of proteins expressed after F.a.1-caryopsis colonization by conducting proteomic evaluations on (i) leachates, soluble extrinsic (seed-surface) proteins released upon washing caryopses in buffer and (ii) proteins extracted from whole caryopses; interactions with aluminum (Al) were also evaluated in the latter study because soil acidification and associated metal toxicity are growing problems. Of the 119 leachate proteins classified as defense/stress, 80 were induced or repressed. Defense/stress proteins were far more abundant in A. fatua (35%) than in F.a.1 (12%). Avena defense/stress proteins were also the most highly regulated category, with 30% induced and 35% repressed by F.a.1. Antifungal proteins represented 36% of Avena defense proteins and were the most highly regulated, with 36% induced and 37% repressed by F.a.1. These results implicate selective regulation of Avena defense proteins by F.a.1. Fusarium proteins were also highly abundant in the leachates, with 10% related to pathogenicity, 45% of which were associated with host cell wall degradation. In whole caryopsis extracts, fungal colonization generally resulted in induction of a similar set of Avena proteins in the presence and absence of Al. Results advance the hypothesis that seed decay pathogens elicit intricate and dynamic biochemical responses in dormant seeds.
Assuntos
Avena , Fusarium , Proteínas de Choque Térmico/metabolismo , Doenças das Plantas , Proteoma , Proteômica , Sementes/fisiologia , SoloRESUMO
BACKGROUND: Membranous nephropathy (MN) results from deposition of antigen-antibody complexes along the glomerular basement membrane (GBM). PLA2R, THSD7A, NELL1, and SEMA3B account for 80%-90% of target antigens in MN. METHODS: We performed laser microdissection and mass spectrometry (MS/MS) in kidney biopsies from 135 individuals with PLA2R-negative MN, and used immunohistochemistry/immunofluorescence and confocal microscopy to confirm the MS/MS finding, detect additional cases, and localize the novel protein. We also performed MS/MS and immunohistochemistry on 116 controls and used immunofluorescence microscopy to screen biopsy samples from two validation cohorts. Western blot and elution studies were performed to detect antibodies in serum and biopsy tissue. RESULTS: MS/MS studies detected a unique protein, protocadherin 7 (PCDH7), in glomeruli of ten (5.7%) PLA2R-negative MN cases, which also were negative for PLA2R, THSD7A, EXT1/EXT2, NELL1, and SEMA3B. Spectral counts ranged from six to 24 (average 13.2 [SD 6.6]). MS/MS did not detect PCDH7 in controls (which included 28 PLA2R-positive cases). In all ten PCDH7-positive cases, immunohistochemistry showed bright granular staining along the GBM, which was absent in the remaining cases of PLA2R-negative MN and control cases. Four of 69 (5.8%) cases in the validation cohorts (all of which were negative for PLA2R, THSD7A, EXT1, NELL1, and SEMA3B) were PCDH7-positive MN. Kidney biopsy showed minimal complement deposition in 12 of the 14 PCDH7-associated cases. Confocal microscopy showed colocalization of PCDH7 and IgG along the GBM. Western blot analysis using sera from six patients showed antibodies to nonreduced PCDH7. Elution of IgG from frozen tissue of PCDH7-associated MN showed reactivity against PCDH7. CONCLUSIONS: MN associated with the protocadherin PCDH7 appears to be a distinct, previously unidentified type of MN.
Assuntos
Caderinas/metabolismo , Glomerulonefrite Membranosa/metabolismo , Adulto , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Glomerulonefrite Membranosa/patologia , Humanos , Microdissecção e Captura a Laser , Masculino , Espectrometria de Massas , Microscopia Confocal , Pessoa de Meia-Idade , ProtocaderinasRESUMO
BACKGROUND: In patients with secondary (autoimmune) membranous nephropathy, two novel proteins, Exostosin 1 and Exostosin 2 (EXT1/EXT2), are potential disease antigens, biomarkers, or both. In this study, we validate the EXT1/EXT2 findings in a large cohort of membranous lupus nephritis. METHODS: We conducted a retrospective cohort study of patients with membranous lupus nephritis, and performed immunohistochemistry studies on the kidney biopsy specimens against EXT1 and EXT2. Clinicopathologic features and outcomes of EXT1/EXT2-positive versus EXT1/EXT2-negative patients were compared. RESULTS: Our study cohort included 374 biopsy-proven membranous lupus nephritis cases, of which 122 (32.6%) were EXT1/EXT2-positive and 252 (67.4%) were EXT1/EXT2-negative. EXT1/EXT2-positive patients were significantly younger (P=0.01), had significantly lower serum creatinine levels (P=0.02), were significantly more likely to present with proteinuria ≥3.5 g/24 h (P=0.009), and had significantly less chronicity features (glomerulosclerosis, P=0.001 or interstitial fibrosis and tubular atrophy, P<0.001) on kidney biopsy. Clinical follow-up data were available for 160 patients, of which 64 (40%) biopsy results were EXT1/EXT2-positive and 96 (60%) were EXT1/EXT2-negative. The proportion of patients with class 3/4 lupus nephritis coexisting with membranous lupus nephritis was not different between the EXT1/EXT2-positive and EXT1/EXT2-negative groups (25.0% versus 32.3%; P=0.32). The patients who were EXT1/EXT2-negative evolved to ESKD faster and more frequently compared with EXT1/EXT2-positive patients (18.8% versus 3.1%; P=0.003). CONCLUSIONS: The prevalence of EXT1/EXT2 positivity was 32.6% in our cohort of membranous lupus nephritis. Compared with EXT1/EXT2-negative membranous lupus nephritis, EXT1/EXT2-positive disease appears to represent a subgroup with favorable kidney biopsy findings with respect to chronicity indices. Cases of membranous lupus nephritis that are EXT1/EXT2-negative are more likely to progress to ESKD compared with those that are EXT1/EXT2-positive.
Assuntos
Glomerulonefrite Membranosa/metabolismo , Nefrite Lúpica/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Adulto , Biomarcadores/metabolismo , Estudos de Coortes , Progressão da Doença , Feminino , Glomerulonefrite Membranosa/imunologia , Glomerulonefrite Membranosa/patologia , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Falência Renal Crônica/imunologia , Falência Renal Crônica/metabolismo , Falência Renal Crônica/patologia , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos RetrospectivosRESUMO
We described several postprocessing methods to measure protein concentrations in human urine from existing 1H nuclear magnetic resonance (NMR) metabolomic spectra: (1) direct spectral integration, (2) integration of NCD spectra (NCD = 1D NOESY-CPMG), (3) integration of SMolESY-filtered 1D NOESY spectra (SMolESY = Small Molecule Enhancement SpectroscopY), (4) matching protein patterns, and (5) TSP line integral and TSP linewidth. Postprocessing consists of (a) removal of the metabolite signals (demetabolization) and (b) extraction of the protein integral from the demetabolized spectra. For demetabolization, we tested subtraction of the spin-echo 1D spectrum (CPMG) from the regular 1D spectrum and low-pass filtering of 1D NOESY by its derivatives (c-SMolESY). Because of imperfections in the demetabolization, in addition to direct integration, we extracted protein integrals by the piecewise comparison of demetabolized spectra with the reference spectrum of albumin. We analyzed 42 urine samples with protein content known from the bicinchoninic acid (BCA) assay. We found excellent correlation between the BCA assay and the demetabolized NMR integrals. We have provided conversion factors for calculating protein concentrations in mg/mL from spectral integrals in mM. Additionally, we found the trimethylsilyl propionate (TSP, NMR standard) spectral linewidth and the TSP integral to be good indicators of protein concentration. The described methods increase the information content of urine NMR metabolomics spectra by informing clinical studies of protein concentration.
Assuntos
Metabolômica , Humanos , Espectroscopia de Ressonância MagnéticaRESUMO
Membranous nephropathy results from subepithelial antigen-antibody complex deposition along the glomerular basement membrane. Although PLA2R, THSD7A, and NELL-1 account for a majority (about 80%) of the target antigens, the target antigen in the remaining cases is not known. Using laser microdissection of PLA2R-negative glomeruli of patients with membranous nephropathy followed by mass spectrometry we identified a unique protein, Semaphorin 3B, in three cases. Mass spectrometry failed to detect Semaphorin-3B in 23 PLA2R-associated cases of membranous nephropathy and 88 controls. Semaphorin 3B in all three cases was localized to granular deposits along the glomerular basement membrane by immunohistochemistry. Next, an additional eight cases of Semaphorin 3B-associated membranous nephropathy were identified in three validation cohorts by immunofluorescence microscopy. In four of 11 cases, kidney biopsy also showed tubular basement membrane deposits of IgG on frozen sections. Confocal microscopy showed that both IgG and Semaphorin 3B co-localized to the glomerular basement membrane. Western blot analysis of five available sera showed reactivity to reduced Semaphorin 3B in four of four patients with active disease and no reactivity in one patient in clinical remission; there was also no reactivity in control sera. Eight of the 11 cases of Semaphorin 3B-associated membranous nephropathy were pediatric cases. Furthermore, in five cases, the disease started at or below the age of two. Thus, Semaphorin 3B-associated membranous nephropathy appears to be a distinct type of disease; more likely to be present in pediatric patients.
Assuntos
Glomerulonefrite Membranosa , Semaforinas , Criança , Membrana Basal Glomerular , Glomerulonefrite Membranosa/diagnóstico , Humanos , Imuno-Histoquímica , Glicoproteínas de Membrana , Microscopia ConfocalRESUMO
Membranous nephropathy is characterized by deposition of immune complexes along the glomerular basement membrane. PLA2R and THSD7A are target antigens in 70% and 1-5% of primary membranous nephropathy cases, respectively. In the remaining cases, the target antigen is unknown. Here, laser microdissection of glomeruli followed by mass spectrometry was used to identify novel antigen(s) in PLA2R-negative membranous nephropathy. An initial pilot mass spectrometry study in 35 cases of PLA2R-negative membranous nephropathy showed high spectral counts for neural tissue encoding protein with EGF-like repeats, NELL-1, in six cases. Mass spectrometry failed to detect NELL-1 in 23 PLA2R-associated membranous nephropathy and 88 controls. NELL-1 was localized by immunohistochemistry, which showed bright granular glomerular basement membrane staining for NELL-1 in all six cases. Next, an additional 23 NELL-1 positive cases of membranous nephropathy were identified by immunohistochemistry in a discovery cohort of 91 PLA2R-negative membranous nephropathy cases, 14 were confirmed by mass spectrometry. Thus, 29 of 126 PLA2R-negative cases were positive for NELL-1. PLA2R-associated membranous nephropathy and controls stained negative for NELL-1. We then identified five NELL-1 positive cases of membranous nephropathy out of 84 PLA2R and THSD7A-negative cases in two validation cohorts from France and Belgium. By confocal microscopy, both IgG and NELL-1 co-localized to the glomerular basement membrane. Western blot analysis showed reactivity to NELL-1 in five available sera, but no reactivity in control sera. Clinical and biopsy findings of NELL-1 positive membranous nephropathy showed features of primary membranous nephropathy. Thus, a subset of membranous nephropathy is associated with accumulation and co-localization of NELL-1 and IgG along the glomerular basement membrane, and with anti-NELL-1 antibodies in the serum. Hence, NELL-1 defines a distinct type of primary membranous nephropathy.
Assuntos
Autoantígenos/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Membrana Basal Glomerular/patologia , Glomerulonefrite Membranosa/imunologia , Idoso , Autoanticorpos/análise , Autoanticorpos/sangue , Autoanticorpos/imunologia , Autoantígenos/análise , Biópsia , Proteínas de Ligação ao Cálcio/análise , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Membrana Basal Glomerular/imunologia , Membrana Basal Glomerular/ultraestrutura , Glomerulonefrite Membranosa/sangue , Glomerulonefrite Membranosa/diagnóstico , Glomerulonefrite Membranosa/patologia , Humanos , Microdissecção e Captura a Laser , Masculino , Espectrometria de Massas , Microscopia Confocal , Microscopia Eletrônica , Microscopia de Fluorescência , Pessoa de Meia-Idade , Projetos Piloto , Receptores da Fosfolipase A2/análise , Receptores da Fosfolipase A2/imunologia , Trombospondinas/análise , Trombospondinas/imunologiaRESUMO
BACKGROUND: In membranous nephropathy (MN), which is characterized by deposition of immune complexes along the glomerular basement membrane (GBM), phospholipase A2 receptor (PLA2R) and thrombospondin type 1 domain-containing 7A are target antigens in approximately 70% and 1%-5% of cases of primary MN, respectively. In other cases of primary MN and in secondary MN, the target antigens are unknown. METHODS: We studied 224 cases of biopsy-proven PLA2R-negative MN and 102 controls (including 47 cases of PLA2R-associated MN) in pilot and discovery cohorts. We also evaluated 48 cases of PLA2R-negative presumed primary MN and lupus MN in a validation cohort. We used laser microdissection and mass spectrometry to identify new antigens, which were localized by immunohistochemistry. RESULTS: Mass spectrometry detected exostosin 1 (EXT1) and exostosin 2 (EXT2) in 21 cases of PLA2R-negative MN, but not in PLA2R-associated MN and control cases. Immunohistochemistry staining revealed bright granular GBM staining for EXT1 and EXT2. Clinical and biopsy findings showed features of autoimmune disease, including lupus, in 80.7% of the 26 EXT1/EXT2-associated MN cases we identified. In the validation cohort, we confirmed that EXT1/EXT2 staining was detected in pure class 5 lupus nephritis (eight of 18 patients) and in presumed primary MN associated with signs of autoimmunity (three of 16 patients); only one of the 14 cases of mixed class 5 and 3/4 lupus nephritis was positive for EXT1/EXT2. Tests in seven patients with EXT1/EXT2-associated MN found no circulating anti-exostosin antibodies. CONCLUSIONS: A subset of MN is associated with accumulation of EXT1 and EXT2 in the GBM. Autoimmune disease is common in this group of patients.
Assuntos
Glomerulonefrite Membranosa/imunologia , Glomerulonefrite Membranosa/patologia , N-Acetilglucosaminiltransferases/imunologia , Receptores da Fosfolipase A2/metabolismo , Adulto , Autoanticorpos/imunologia , Biópsia por Agulha , Western Blotting , Estudos de Casos e Controles , Progressão da Doença , Feminino , Seguimentos , Humanos , Imuno-Histoquímica , Masculino , Espectrometria de Massas , Projetos Piloto , Valores de Referência , Medição de Risco , Índice de Gravidade de DoençaRESUMO
Osteosarcomas are the most prevalent bone tumors in pediatric patients, but can also occur later in life. Bone tumors have the potential to metastasize to lung and occasionally other vital organs. To understand how osteosarcoma cells interact with their micro-environment to support bone tumor progression and metastasis, we analyzed secreted proteins and exosomes from three human osteosarcoma cell lines. Exosome isolation was validated by transmission electron microscopy (TEM) and immuno-blotting for characteristic biomarkers (CD63, CD9, and CD81). Exosomal and soluble proteins (less than 100 kDa) were identified by mass spectrometry analysis using nanoLC-MS/MS and classified by functional gene ontology clustering. We identified a secretome set of >3,000 proteins for both fractions, and detected proteins that are either common or unique among the three osteosarcoma cell lines. Protein ontology comparison of proteomes from exosomes and exosome-free fractions revealed differences in the enrichment of functional categories associated with different biological processes, including those related to tumor progression (i.e., angiogenesis, cell adhesion, and cell migration). The secretome characteristics of osteosarcoma cells are consistent with the pathological properties of tumor cells with metastatic potential. J. Cell. Biochem. 118: 351-360, 2017. © 2016 Wiley Periodicals, Inc.
Assuntos
Antígenos CD/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/metabolismo , Exossomos/metabolismo , Proteínas de Neoplasias/metabolismo , Osteossarcoma/metabolismo , Linhagem Celular Tumoral , HumanosRESUMO
Autosomal dominant polycystic kidney disease (ADPKD) is a common cause of ESRD. Affected individuals inherit a defective copy of either PKD1 or PKD2, which encode polycystin-1 (PC1) or polycystin-2 (PC2), respectively. PC1 and PC2 are secreted on urinary exosome-like vesicles (ELVs) (100-nm diameter vesicles), in which PC1 is present in a cleaved form and may be complexed with PC2. Here, label-free quantitative proteomic studies of urine ELVs in an initial discovery cohort (13 individuals with PKD1 mutations and 18 normal controls) revealed that of 2008 ELV proteins, 9 (0.32%) were expressed at significantly different levels in samples from individuals with PKD1 mutations compared to controls (P<0.03). In samples from individuals with PKD1 mutations, levels of PC1 and PC2 were reduced to 54% (P<0.02) and 53% (P<0.001), respectively. Transmembrane protein 2 (TMEM2), a protein with homology to fibrocystin, was 2.1-fold higher in individuals with PKD1 mutations (P<0.03). The PC1/TMEM2 ratio correlated inversely with height-adjusted total kidney volume in the discovery cohort, and the ratio of PC1/TMEM2 or PC2/TMEM2 could be used to distinguish individuals with PKD1 mutations from controls in a confirmation cohort. In summary, results of this study suggest that a test measuring the urine exosomal PC1/TMEM2 or PC2/TMEM2 ratio may have utility in diagnosis and monitoring of polycystic kidney disease. Future studies will focus on increasing sample size and confirming these studies. The data were deposited in the ProteomeXchange (identifier PXD001075).
Assuntos
Exossomos/metabolismo , Mutação , Rim Policístico Autossômico Dominante/metabolismo , Canais de Cátion TRPP/metabolismo , Adulto , Biomarcadores/metabolismo , Western Blotting , Estudos de Casos e Controles , Estudos de Viabilidade , Feminino , Predisposição Genética para Doença , Humanos , Falência Renal Crônica/etiologia , Falência Renal Crônica/fisiopatologia , Masculino , Rim Policístico Autossômico Dominante/complicações , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/genética , Proteômica/métodos , Valores de Referência , Sensibilidade e Especificidade , Canais de Cátion TRPP/genética , Urinálise , Adulto JovemRESUMO
Urinary exosome-like vesicles (ELVs) are a heterogenous mixture (diameter 40-200 nm) containing vesicles shed from all segments of the nephron including glomerular podocytes. Contamination with Tamm-Horsfall protein (THP) oligomers has hampered their isolation and proteomic analysis. Here we improved ELV isolation protocols employing density centrifugation to remove THP and albumin, and isolated a glomerular membranous vesicle (GMV)-enriched subfraction from 7 individuals identifying 1830 proteins and in 3 patients with glomerular disease identifying 5657 unique proteins. The GMV fraction was composed of podocin/podocalyxin-positive irregularly shaped membranous vesicles and podocin/podocalyxin-negative classical exosomes. Ingenuity pathway analysis identified integrin, actin cytoskeleton, and Rho GDI signaling in the top three canonical represented signaling pathways and 19 other proteins associated with inherited glomerular diseases. The GMVs are of podocyte origin and the density gradient technique allowed isolation in a reproducible manner. We show many nephrotic syndrome proteins, proteases, and complement proteins involved in glomerular disease are in GMVs and some were only shed in the disease state (nephrin, TRPC6, INF2 and phospholipase A2 receptor). We calculated sample sizes required to identify new glomerular disease biomarkers, expand the ELV proteome, and provide a reference proteome in a database that may prove useful in the search for biomarkers of glomerular disease.
Assuntos
Exossomos/química , Membrana Basal Glomerular/química , Nefropatias/urina , Podócitos/química , Proteinúria/urina , Proteômica/métodos , Urinálise , Urina/química , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Biomarcadores/urina , Estudos de Casos e Controles , Centrifugação com Gradiente de Concentração , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Nefropatias/diagnóstico , Masculino , Dados de Sequência Molecular , Proteinúria/diagnóstico , Adulto JovemRESUMO
Liver fibrosis is characterized by the activation of perivascular hepatic stellate cells (HSCs), the release of fibrogenic nanosized extracellular vesicles (EVs), and increased HSC glycolysis. Nevertheless, how glycolysis in HSCs coordinates fibrosis amplification through tissue zone-specific pathways remains elusive. Here, we demonstrate that HSC-specific genetic inhibition of glycolysis reduced liver fibrosis. Moreover, spatial transcriptomics revealed a fibrosis-mediated up-regulation of EV-related pathways in the liver pericentral zone, which was abrogated by glycolysis genetic inhibition. Mechanistically, glycolysis in HSCs up-regulated the expression of EV-related genes such as Ras-related protein Rab-31 (RAB31) by enhancing histone 3 lysine 9 acetylation on the promoter region, which increased EV release. Functionally, these glycolysis-dependent EVs increased fibrotic gene expression in recipient HSC. Furthermore, EVs derived from glycolysis-deficient mice abrogated liver fibrosis amplification in contrast to glycolysis-competent mouse EVs. In summary, glycolysis in HSCs amplifies liver fibrosis by promoting fibrogenic EV release in the hepatic pericentral zone, which represents a potential therapeutic target.
Assuntos
Vesículas Extracelulares , Glicólise , Células Estreladas do Fígado , Cirrose Hepática , Animais , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/genética , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Vesículas Extracelulares/metabolismo , Camundongos , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Humanos , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , MasculinoRESUMO
Acquired sporadic late onset nemaline myopathy (SLONM) and inherited nemaline myopathy (iNM) both feature accumulation of nemaline rods in muscle fibers. Unlike iNM, SLONM is amenable to therapy. The distinction between these disorders is therefore crucial when the diagnosis remains ambiguous after initial investigations. We sought to identify biomarkers facilitating this distinction and to investigate the pathophysiology of nemaline rod formation in these different disorders. Twenty-two muscle samples from patients affected by SLONM or iNM underwent quantitative histological analysis, laser capture microdissection for proteomic analysis of nemaline rod areas and rod-free areas, and transcriptomic analysis. In all iNM samples, nemaline rods were found in subsarcolemmal or central aggregates, whereas they were diffusely distributed within muscle fibers in most SLONM samples. In SLONM, muscle fibers harboring nemaline rods were smaller than those without rods. Necrotic fibers, increased endomysial connective tissue, and atrophic fibers filled with nemaline rods were more common in SLONM. Proteomic analysis detected differentially expressed proteins between nemaline rod areas and rod-free areas, as well as between SLONM and iNM. These differentially expressed proteins implicated immune, structural, metabolic, and cellular processes in disease pathophysiology. Notably, immunoglobulin overexpression with accumulation in nemaline rod areas was detected in SLONM. Transcriptomic analysis corroborated proteomic findings and further revealed substantial gene expression differences between SLONM and iNM. Overall, we identified unique pathological and molecular signatures associated with SLONM and iNM, suggesting distinct underlying pathophysiological mechanisms. These findings represent a step towards enhanced diagnostic tools and towards development of treatments for SLONM.
Assuntos
Miopatias da Nemalina , Humanos , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Proteômica , Fibras Musculares Esqueléticas/patologia , Miocárdio/patologia , Músculo Esquelético/patologiaRESUMO
Multiple myeloma (MM) bone disease is a significant cause of morbidity but there is a paucity of data on the impact of malignant plasma cells on adjacent trabecular bone within the BM. Here, we characterize the proteome of trabecular bone tissue from BM biopsies of 56 patients with monoclonal gammopathy of undetermined significance (MGUS), smoldering (SMM), newly diagnosed (NDMM), relapsed MM (RMM), and normal controls. Proteins involved in extracellular matrix (ECM) formation and immunity pathways were decreased in SMM and active MM. Among the proteins most decreased were immunoglobulins, type IV collagen, and TIMP3, suggesting increased immunoparesis and decreased ECM remodelling within trabecular bone. Proteins most increased in SMM/MM were APP (enhances osteoclast activity), ENPP1 (enhances bone mineralization), and MZB1 (required for normal plasmablast differentiation). Pathway analyses showed that proteins involved in gamma -carboxylation, a pathway implicated in osteocalcin function, osteoblast differentiation, and normal hematopoiesis, were also overexpressed in SMM/MM. This study is the first comprehensive proteomic atlas of the BM bone proteome in dysproteinemias. We identify new key proteins and pathways for MM bone disease and potentially impaired hematopoiesis, and show for the first time that gamma -carboxylation pathways are increased in the bone tissue of SMM/MM.