Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nucleic Acids Res ; 43(10): 4833-54, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25897113

RESUMO

In mouse embryonic cells, ligand-activated retinoic acid receptors (RARs) play a key role in inhibiting pluripotency-maintaining genes and activating some major actors of cell differentiation. To investigate the mechanism underlying this dual regulation, we performed joint RAR/RXR ChIP-seq and mRNA-seq time series during the first 48 h of the RA-induced Primitive Endoderm (PrE) differentiation process in F9 embryonal carcinoma (EC) cells. We show here that this dual regulation is associated with RAR/RXR genomic redistribution during the differentiation process. In-depth analysis of RAR/RXR binding sites occupancy dynamics and composition show that in undifferentiated cells, RAR/RXR interact with genomic regions characterized by binding of pluripotency-associated factors and high prevalence of the non-canonical DR0-containing RA response element. By contrast, in differentiated cells, RAR/RXR bound regions are enriched in functional Sox17 binding sites and are characterized with a higher frequency of the canonical DR5 motif. Our data offer an unprecedentedly detailed view on the action of RA in triggering pluripotent cell differentiation and demonstrate that RAR/RXR action is mediated via two different sets of regulatory regions tightly associated with cell differentiation status.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica , Células-Tronco Pluripotentes/metabolismo , Receptores do Ácido Retinoico/metabolismo , Elementos de Resposta , Receptores X de Retinoides/metabolismo , Transcrição Gênica , Animais , Sítios de Ligação , Células-Tronco de Carcinoma Embrionário , Genoma , Camundongos , Motivos de Nucleotídeos , Fatores de Transcrição/metabolismo , Tretinoína/farmacologia
2.
J Biol Chem ; 287(31): 26328-41, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22661711

RESUMO

Retinoic acid receptors (RARs) heterodimerize with retinoid X receptors (RXRs) and bind to RA response elements (RAREs) in the regulatory regions of their target genes. Although previous studies on limited sets of RA-regulated genes have defined canonical RAREs as direct repeats of the consensus RGKTCA separated by 1, 2, or 5 nucleotides (DR1, DR2, DR5), we show that in mouse embryoid bodies or F9 embryonal carcinoma cells, RARs occupy a large repertoire of sites with DR0, DR8, and IR0 (inverted repeat 0) elements. Recombinant RAR-RXR binds these non-canonical spacings in vitro with comparable affinities to DR2 and DR5. Most DR8 elements comprise three half-sites with DR2 and DR0 spacings. This specific half-site organization constitutes a previously unrecognized but frequent signature of RAR binding elements. In functional assays, DR8 and IR0 elements act as independent RAREs, whereas DR0 does not. Our results reveal an unexpected diversity in the spacing and topology of binding elements for the RAR-RXR heterodimer. The differential ability of RAR-RXR bound to DR0 compared to DR2, DR5, and DR8 to mediate RA-dependent transcriptional activation indicates that half-site spacing allosterically regulates RAR function.


Assuntos
Receptores do Ácido Retinoico/metabolismo , Elementos de Resposta , Receptores X de Retinoides/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Ligação Competitiva , Células Cultivadas , Imunoprecipitação da Cromatina , Técnicas de Cocultura , Sequência Consenso , Ensaio de Desvio de Mobilidade Eletroforética , Corpos Embrioides/metabolismo , Genoma , Camundongos , Ligação Proteica , Receptores do Ácido Retinoico/química , Sequências Repetitivas de Ácido Nucleico , Receptores X de Retinoides/química , Análise de Sequência de DNA , Titulometria , Transcrição Gênica
3.
J Biol Chem ; 286(38): 33322-34, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21803772

RESUMO

The nuclear retinoic acid receptors interact with specific retinoic acid (RA) response elements (RAREs) located in the promoters of target genes to orchestrate transcriptional networks involved in cell growth and differentiation. Here we describe a genome-wide in silico analysis of consensus DR5 RAREs based on the recurrent RGKTSA motifs. More than 15,000 DR5 RAREs were identified and analyzed for their localization and conservation in vertebrates. We selected 138 elements located ±10 kb from transcription start sites and gene ends and conserved across more than 6 species. We also validated the functionality of these RAREs by analyzing their ability to bind retinoic acid receptors (ChIP sequencing experiments) as well as the RA regulation of the corresponding genes (RNA sequencing and quantitative real time PCR experiments). Such a strategy provided a global set of high confidence RAREs expanding the known experimentally validated RAREs repertoire associated to a series of new genes involved in cell signaling, development, and tumor suppression. Finally, the present work provides a valuable knowledge base for the analysis of a wider range of RA-target genes in different species.


Assuntos
Pareamento de Bases/genética , Biologia Computacional/métodos , Sequência Conservada/genética , Genoma/genética , Receptores do Ácido Retinoico/genética , Sequências Repetitivas de Ácido Nucleico/genética , Elementos de Resposta/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Evolução Molecular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Dados de Sequência Molecular , Filogenia , Ligação Proteica/efeitos dos fármacos , Alinhamento de Sequência , Tretinoína/farmacologia , Peixe-Zebra/genética
4.
J Sci Med Sport ; 23(11): 1021-1027, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32471784

RESUMO

OBJECTIVES: Exertional Heat Stroke (EHS) is one of the top three causes of sudden death in athletes. Extrinsic and intrinsic risk factors have been identified but the genetic causes still remain unclear. Our aim was to identify genes responsible for EHS, which is a necessary step to identify patients at risk and prevent crises. DESIGN: Genetic and functional laboratory studies METHODS: Whole Exome Sequencing (WES) was performed to search for candidate genes in a cohort of 15 soldiers who had a documented EHS episode. In silico and in vitro functional studies were performed to evaluate the effect of mutations identified in the candidate gene TRPV1. RESULTS: WES led to the identification of two missense variations in the TRPV1 gene. These variations were very rare or unreported in control databases and located in critical domains of the protein. In vitro functional studies revealed that both variations induce a strong modification of the channel response to one of its natural agonist, the capsaicin. CONCLUSIONS: We evidenced mutations altering channel properties of the TRPV1 gene and demonstrated that TRPV1, which is involved in thermoregulation and nociception, is a new candidate gene for EHS. Our data provide the bases to explore genetic causes and molecular mechanisms governing the pathophysiology of EHS.


Assuntos
Predisposição Genética para Doença , Golpe de Calor/genética , Canais de Cátion TRPV/genética , Adulto , França , Células HEK293 , Humanos , Masculino , Militares , Mutação de Sentido Incorreto
5.
Carcinogenesis ; 30(1): 28-34, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18952593

RESUMO

Human telomerase reverse transcriptase (hTERT) is expressed in most cancer cells. Paradoxically, its promoter is embedded in a hypermethylated CpG island. A short region escapes to this alteration, allowing a basal level of transcription. However, the methylation of adjacent regions may play a role in the maintenance of low hTERT expression. It is now well established that methyl-CpG binding domain proteins mediate the transcriptional silencing of hypermethylated genes. The potential involvement of these proteins in the control of hTERT expression was firstly investigated in HeLa cells. Chromatin immunoprecipitation assays showed that only methyl-CpG-binding domain protein 2 (MBD2) associated the hypermethylated hTERT promoter. In MBD2 knockdown HeLa cells, constitutively depleted in MBD2, neither methyl CpG binding protein 2 (MeCP2) nor MBD1 acted as substitutes for MBD2. MBD2 depletion by transient or constitutive RNA interference led to an upregulation of hTERT transcription that can be downregulated by expressing mouse Mbd2 protein. Our results indicate that MBD2 is specifically and directly involved in the transcriptional repression of hTERT in HeLa cells. This specific transcriptional repression was also observed in breast, liver and neuroblastoma cancer cell lines. Thus, MBD2 seems to be a general repressor of hTERT in hTERT-methylated telomerase-positive cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regiões Promotoras Genéticas , Telomerase/genética , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Metilação de DNA , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Lung Cancer ; 116: 15-24, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29413046

RESUMO

OBJECTIVES: The aim of the present study was firstly to assess in a clinical setting the yields of an amplicon-based parallel RNA sequencing (RNA-seq) assay for ALK fusion transcript variants detection in comparison with immunohistochemistry (IHC) and fluorescent in-situ hybridization (FISH) in a selected population of ALK-positive and ALK-negative non-small cell lung cancer (NSCLC) cases, and secondly to evaluate the impact of the ALK variant on crizotinib efficacy. MATERIALS AND METHODS: The cohort used for the assessment of the RNA-seq assay comprised 53 samples initially diagnosed as being ALK-positive based on the results obtained by IHC and/or FISH, and 23 ALK-negative samples. A distinction was made between 'truly' IHC/FISH positive or 'truly' IHC/FISH negative samples, and those for which the IHC and/or FISH were equivocal (IHC) or borderline-positive (FISH). RESULTS: On the overall population, RNA-seq sensitivity (Se) and specificity (Spe) were of 80% and 100%, respectively when IHC and FISH were combined. For the 31 'truly positive' samples, Se and Spe of 100% were reached. An ALK status could be assigned by RNA-seq in 10/10 of the equivocal and/or borderline-positive IHC/FISH cases, 2/7 IHC/FISH discordant cases. When crizotinib efficacy was evaluated according to the type of ALK variant, better clinical outcomes were observed in crizotinib-treated patients with EML4-ALK v1/v2/others variants compared to v3a/b variants. CONCLUSION: RNA-seq detects ALK rearrangements with a high sensitivity and specificity using only 10 ng of RNA. It appears to be a promising rescue technique for non-clear-cut IHC/FISH cases and also offers a unique opportunity to identify ALK fusion variants and evaluate their predictive value for ALK inhibitors efficacy.


Assuntos
Quinase do Linfoma Anaplásico/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Crizotinibe/farmacologia , Neoplasias Pulmonares/genética , Proteínas de Fusão Oncogênica/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Feminino , Amplificação de Genes , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Masculino , Pessoa de Meia-Idade , RNA Neoplásico/genética , Análise de Sequência de RNA/métodos , Adulto Jovem
7.
Epigenetics ; 6(11): 1295-307, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22048253

RESUMO

Methyl-CpG Binding Domain (MBD) proteins are thought to be key molecules in the interpretation of DNA methylation signals leading to gene silencing through recruitment of chromatin remodeling complexes. In cancer, the MBD-family member, MBD2, may be primarily involved in the repression of genes exhibiting methylated CpG at their 5' end. Here we ask whether MBD2 randomly associates methylated sequences, producing chance effects on transcription, or exhibits a more specific recognition of some methylated regions. Using chromatin and DNA immunoprecipitation, we analyzed MBD2 and RNA polymerase II deposition and DNA methylation in HeLa cells on arrays representing 25,500 promoter regions. This first whole-genome mapping revealed the preferential localization of MBD2 near transcription start sites (TSSs), within the region analyzed, 7.5 kb upstream through 2.45 kb downstream of 5' transcription start sites. Probe by probe analysis correlated MBD2 deposition and DNA methylation. Motif analysis did not reveal specific sequence motifs; however, CCG and CGC sequences seem to be overrepresented. Nonrandom association (multiple correspondence analysis, p < 0.0001) between silent genes, DNA methylation and MBD2 binding was observed. The association between MBD2 binding and transcriptional repression weakened as the distance between binding site and TSS increased, suggesting that MBD2 represses transcriptional initiation. This hypothesis may represent a functional explanation for the preferential binding of MBD2 at methyl-CpG in TSS regions.


Assuntos
Proteínas de Ligação a DNA/genética , Sítio de Iniciação de Transcrição , Sítios de Ligação , Cromatina/metabolismo , Ilhas de CpG/genética , DNA/metabolismo , Metilação de DNA , Células HeLa , Humanos , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
8.
PLoS One ; 5(3): e9665, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20300195

RESUMO

BACKGROUND: In human Estrogen Receptor alpha (ERalpha)-positive breast cancers, 5' end dense methylation of the estrogen-regulated pS2/TFF1 gene correlates with its transcriptional inhibition. However, in some ERalpha-rich biopsies, pS2 expression is observed despite the methylation of its TATA-box region. Herein, we investigated the methylation-dependent mechanism of pS2 regulation. METHODOLOGY/PRINCIPAL FINDINGS: We observed interplay between Methyl-CpG Binding Domain protein 2 (MBD2) transcriptional repressor and ERalpha transactivator: (i) the pS2 gene is poised for transcription upon demethylation limited to the enhancer region containing the estrogen responsive element (ERE); (ii) MBD2-binding sites overlapped with the methylation status of the pS2 5' end; (iii) MBD2 depletion elevated pS2 expression and ectopic expression of ERalpha partially overcame the inhibitory effect of MBD2 when the ERE is unmethylated. Furthermore, serial chromatin immunoprecipitation assays indicated that MBD2 and ERalpha could simultaneously occupy the same pS2 DNA molecule; (iv) concomitant ectopic ERalpha expression and MBD2 depletion resulted in synergistic transcriptional stimulation, while the pS2 promoter remains methylated. CONCLUSIONS/SIGNIFICANCE: MBD2 and ERalpha drive opposite effects on pS2 expression, which are associated with specific steady state levels of histone H3 acetylation and methylation marks. Thus, epigenetic silencing of pS2 could be dependent on balance of the relative intracellular concentrations of ERalpha and MBD2.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Estrogênios/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Supressoras de Tumor/metabolismo , Sítios de Ligação , Biópsia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Receptor alfa de Estrogênio/metabolismo , Inativação Gênica , Células HeLa , Humanos , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fator Trefoil-1 , Proteínas Supressoras de Tumor/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa