Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38727339

RESUMO

A significant weakness of many organic and inorganic aerogels is their poor mechanical behaviour, representing a great impediment to their application. For example, polymer aerogels generally have higher ductility than silica aerogels, but their elastic modulus is considered too low. Herein, we developed extremely low loading (<1 wt%) 2D graphene oxide (GO) nanosheets modified poly (vinyl alcohol) (PVA) aerogels via a facile and environmentally friendly method. The aerogel shows a 9-fold increase in compressional modulus compared to a pure polymer aerogel. With a low density of 0.04 mg/mm3 and a thermal conductivity of only 0.035 W/m·K, it outperforms many commercial insulators and foams. As compared to a pure PVA polymer aerogel, a 170% increase in storage modulus is obtained by adding only 0.6 wt% GO nanosheets. The nanocomposite aerogel demonstrates strong fire resistance, with a 50% increase in burning time and little smoke discharge. After surface modification with 1H,1H,2H,2H-Perfluorodecyltriethoxysilane, the aerogel demonstrates water resistance, which is suitable for outdoor applications in which it would be exposed to precipitation. Our research demonstrates a new pathway for considerable improvement in the performance and application of polymer aerogels.

2.
ACS Appl Mater Interfaces ; 14(14): 16772-16779, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35362958

RESUMO

Soft actuators that respond to external stimuli like moisture, magnetism, light, and temperature have received tremendous attention owing to their promising potential in many frontier applications, including smart switches, soft robots, sensors, and artificial muscles. However, most of the conventional actuators can only be triggered by a solo stimulus and demand advanced manufacturing techniques that utilize expensive, hazardous, and synthetic raw materials. Herein, we design and fabricate a multiple stimuli-responsive actuator using graphene oxide, Fe3O4 nanoparticles, and tapioca starch via a water evaporation-induced self-assembly method. The resultant hybrid actuator exhibits a bending speed of ∼72° s-1 upon moisture exposure. Moreover, it can perform clockwise and counterclockwise rotations, linear motion, and magnetic object capture by regulating a magnetic field. As representative examples, the actuator is used to fabricate various smart devices such as smart curtains, biomimetic structures, and a smart gripper that undergo complex and consecutive motion under the influence of multiple stimuli.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa