Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 140(45): 15430-15436, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30339759

RESUMO

Because of the small size and large surface area of thiolate-protected Au nanoclusters (NCs), the protecting ligands are expected to play a substantial role in modulating the structure and properties, particularly in the solution phase. However, little is known on how thiolate ligands explicitly modulate the structural properties of the NCs at atomic level, even though this information is critical for predicting the performance of Au NCs in application settings including as a catalyst interacting with small molecules and as a sensor interacting with biomolecular systems. Here, we report a combined experimental and theoretical study, using synchrotron X-ray spectroscopy and quantum mechanics/molecular mechanics simulations, that investigates how the protecting ligands impact the structure and properties of small Au18(SR)14 NCs. Two representative ligand types, smaller aliphatic cyclohexanethiolate and larger hydrophilic glutathione, are selected, and their structures are followed experimentally in both solid and solution phases. It was found that cyclohexanethiolate ligands are significantly perturbed by toluene solvent molecules, resulting in structural changes that cause disorder on the surface of Au18(SR)14 NCs. In particular, large surface cavities in the ligand shell are created by interactions between toluene and cyclohexanethiolate. The appearance of these small molecule-accessible sites on the  NC surface demonstrates the ability of Au NCs to act as a catalyst for organic phase reactions. In contrast, glutathione ligands encapsulate the Au NC core via intermolecular interactions, minimizing structural changes caused by interactions with water molecules. The much better protection from glutathione ligands imparts a rigidified surface and ligand structure, making the NCs desirable for biomedical applications due to the high stability and also offering a structural-based explanation for the enhanced photoluminescence often reported for glutathione-protected Au NCs.

2.
Langmuir ; 29(15): 4894-900, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23560571

RESUMO

We report the peptide-directed preparation and X-ray structural study of biofunctionalized Au nanoparticles (NPs) deposited on Ti surfaces. Au NPs were prepared by reduction of Au(3+) compound onto HCl-refreshed Ti in the presence of thiol-functionalized small peptides. A modified extended X-ray absorption fine-structure (EXAFS) technique, equipped with a rotating-stage and glancing-angle setup, was able to more sensitively detect the structure and bonding of Au NPs on Ti with low surface coverage. It was found that the use of the tripeptide glutathione (GSH) results in smaller NP size when compared to N-(2-mercapto-propionyl) glycine (MPG), a pseudodipeptide, over a wide range of Au/peptide molar ratios (20:1, 10:1, 5:1, and 2:1). By varying the ligand concentration, the Au NP structure in both systems can be controlled, generating nanocrystals, nanoclusters, and Au-thiolate polymer, which is unique for substrate-supported NP synthesis. This work presents a facile preparation of Au-peptide nanoparticles on biocompatible surfaces, and illustrates the high sensitivity of this modified EXAFS technique for structural studies of substrate-supported nanoparticles with low coverage.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Peptídeos/síntese química , Titânio/química , Cristalografia por Raios X , Modelos Moleculares , Tamanho da Partícula , Peptídeos/química , Propriedades de Superfície
3.
Langmuir ; 28(5): 2979-85, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22200112

RESUMO

Immobilizations of nanoparticles and biomolecules on biocompatible substrates such as titanium are two promising approaches to bringing new functionalities to Ti-based biomaterials. Herein, we used a variety of X-ray spectroscopic techniques to study and better understand metal-thiolate interactions in biofunctionalized metal nanoparticle systems supported on Ti substrates. Using a facile one-step procedure, a series of Au nanoparticle samples with varied biomolecule coatings ((2-mercatopropionyl)glycine (MPG) and bovine serum albumin (BSA)) and biomolecule concentrations are prepared. Ag and Pd systems are also studied to observe change with varying metal composition. The structure and properties of these biomolecule-coated nanoparticles are investigated with scanning electron microscopy (SEM) and element-specific X-ray techniques, including extended X-ray absorption fine structure (Au L(3)-edge), X-ray absorption near-edge structure (Au L(3), Ag L(3), Pd L(3), and S K-edge), and X-ray photoelectron spectroscopy (Au 4f, Ag 3d, Pd 3d, and S 2p core level). It was found that, by comparison of SEM and X-ray spectroscopy results, the coating of metal nanoparticles with varying model biomolecule systems can have a significant effect on both surface coverage and organization. This work offers a facile chemical method for bio- and nanofunctionalization of Ti substrates as well as provides a physical picture of the structure and bonding of biocoated metal nanoparticles, which may lead to useful applications in orthopedics and biomedicine.


Assuntos
Materiais Revestidos Biocompatíveis/química , Nanopartículas Metálicas/química , Compostos de Sulfidrila/química , Titânio/química , Animais , Bovinos , Glicina/análogos & derivados , Glicina/química , Modelos Moleculares , Paládio/química , Tamanho da Partícula , Soroalbumina Bovina/química , Prata/química , Propriedades de Superfície
4.
ACS Nano ; 14(7): 8433-8441, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32559064

RESUMO

Recently, silver nanoclusters have garnered considerable attention after the high-yield synthesis and crystallization of a thiolate-protected silver nanocluster, Na4Ag44(SR)30 (SR, protecting thiolate ligand). One intriguing feature of Na4Ag44(SR)30 is its outstanding stability and resistance to chemical reactions, in striking difference from other silver nanostructures whose susceptibility to oxidation (tarnishing) has been commonly observed and thus limits their applications in nanotechnology. Herein, we report the mechanism on the ultrahigh stability of Na4Ag44(SR)30 by uncovering how coordinating solvents interact with the Na4Ag44(SR)30 nanocluster at the atomic scale. Through synchrotron X-ray experiments and theoretical calculations, it was found that strongly coordinating aprotic solvents interact with surface Ag atoms, particularly between ligand bundles, which compresses the Ag core and relaxes surface metal-ligand interactions. Furthermore, water was used as a cosolvent to demonstrate that semiaqueous conditions play an important role in protecting exposed surface regions and can further influence the local structure of the silver nanocluster itself. Notably, under semiaqueous conditions, aprotic coordinating solvent molecules preferentially remain on the metal surface while water molecules interact with ligands, and ligand bundling persisted across the varied solvation conditions. This work offers an atomic level mechanism on the ultrahigh stability of the Na4Ag44(SR)30 nanoclusters from the nanocluster-coordinating solvent interaction perspective, and implies that nanocluster-solvent interactions should be carefully considered moving forward for silver nanoclusters, as they can influence the electronic/chemical properties of the nanocluster as well as the surface accessibility of small molecules for potential catalytic and biomedical applications.

5.
J Nutr Sci ; 8: e24, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428331

RESUMO

To evaluate the daily Se intake of 3- to 5-year-old Japanese children, we used seventy-two urine samples collected from fifty-three children (twenty-seven male and twenty-six female) from two cities in Miyagi prefecture, Japan. For measuring low Se concentrations with high precision, accuracy and rapidity in the 24-h urine samples, we developed an instrumental neutron activation analysis (INAA) method, that is without any chemical separation, using the short-lived 77mSe (t1/2 = 17·4 s) nuclide. The estimated Se intake of the fifty-three children was 51·5 (sd 30·2) µg/d (geometric mean: 42·7 µg/d). Ten subjects (three male and seven female), successfully provided 24-h urine samples over two or three consecutive days; their Se intake was 37·4 (sd 5·9) µg/d. Based on the logarithmically transformed data of these ten subjects, the ratio of intra-/inter-individual variances of usual Se intake was 16·7 (28·0/1·7) and geometric mean was 27·7 µg/d. The 5th to 95th percentile of usual Se intake of these ten subjects was 17·5 to 40·4 µg/d, which ranged between the recommended dietary allowance and tolerable upper intake level of Se by the Dietary Reference Intakes for Japanese (2015).


Assuntos
Estado Nutricional , Selênio/urina , Peso Corporal , Pré-Escolar , Ingestão de Alimentos , Feminino , Humanos , Japão , Masculino , Análise de Ativação de Nêutrons/métodos , Recomendações Nutricionais
6.
J Phys Chem Lett ; 4(19): 3186-91, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-26706178

RESUMO

The recent discovery on the total structure of Au36(SR)24, which was converted from biicosahedral Au38(SR)24, represents a surprising finding of a face-centered cubic (FCC)-like core structure in small gold-thiolate nanoclusters. Prior to this finding, the FCC feature was only expected for larger (nano)crystalline gold. Herein, we report results on the unique bonding properties of Au36(SR)24 that are associated with its FCC-like core structure. Temperature-dependent X-ray absorption spectroscopy (XAS) measurements at the Au L3-edge, in association with ab initio calculations, show that the local structure and electronic behavior of Au36(SR)24 are of more molecule-like nature, whereas its icosahedral counterparts such as Au38(SR)24 and Au25(SR)18 are more metal-like. Moreover, site-specific S K-edge XAS studies indicate that the bridging motif for Au36(SR)24 has different bonding behavior from the staple motif from Au38(SR)24. Our findings highlight the important role of "pseudo"-Au4 units within the FCC-like Au28 core in interpreting the bonding properties of Au36(SR)24 and suggest that FCC-like structure in gold thiolate nanoclusters should be treated differently from its bulk counterpart.

7.
Chem Phys Lipids ; 174: 55-63, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23872189

RESUMO

The incorporation of 9,10-dichlorooctadecanoyl groups using enzyme-catalyzed acylation and protecting group strategies yielded specific regioisomers of di- and tetrachlorinated triacylglycerols. Hexachloro- and hexabromotriacylglycerols were synthesized by addition of chlorine or bromine to tri-(cis-9-octadecenoyl)glycerol. Upon electrospray ionization and tandem mass spectrometry, the sodium adduct ions of all compounds containing a 9,10-dichlorooctadecanoyl group readily lost two molecules of HCl when subjected to collision-induced dissociation. A mechanism describing sequential HCl losses and the formation of a conjugated diene is proposed for the loss of both vicinal chlorine atoms from an alkyl chain. This characteristic fragmentation behavior and the availability of characterized standards will facilitate the development of quantitative analytical methods for the determination of chlorinated triacylglycerols in lipid mixtures isolated from marine and other biological sources.


Assuntos
Triglicerídeos/química , Aspergillus niger/enzimologia , Candida/enzimologia , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Halogenação , Lipase/genética , Lipase/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Rhizomucor/enzimologia , Espectrometria de Massas em Tandem , Triglicerídeos/biossíntese
8.
Anal Chim Acta ; 588(2): 166-72, 2007 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-17386806

RESUMO

In radiological dispersal device (RDD) studies, sintered ceramics made of CeO2 and SrTiO3 were used to simulate actinide oxides and (90)SrTiO3, respectively. Instrumental neutron activation analysis (INAA), inductively coupled plasma optical emission spectroscopy (ICP-OES), and inductively coupled plasma mass spectrometry (ICP-MS) were investigated as possible analytical techniques for the measurement of SrTiO3 and CeO2 constituents in powder forms, sintered ceramics, and air particulates collected following a detonation. For ICP-OES and ICP-MS analysis, new digestion procedures were developed using a closed-vessel microwave apparatus. Acid mixtures (HNO3:H2O2:HF (16:2:1) and HNO3:H2O2 (1:4)) were found to be effective for the digestion of SrTiO3 and CeO2, respectively. The intercomparison study confirmed that the results obtained by ICP-OES/MS are in good agreement with INAA results. This also confirms the efficiency of the digestion procedures for these refractory materials and the inter-exchangeability of the instrumentation tested. Comparison between the ICP-OES and the ICP-MS instrumentation for the determination of air particulates shows, that although the two methods are equivalent, ICP-MS provides better detection limits (0.11, 0.02, and 0.04 microg per filter for Ti, Sr, and Ce, respectively) and the possibility to determine isotopic fractionation as the result of an explosion.


Assuntos
Cerâmica/química , Cério/análise , Espectrometria de Massas/métodos , Estrôncio/análise , Titânio/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa