RESUMO
Direct reciprocity is a powerful mechanism for cooperation in social dilemmas. The very logic of reciprocity, however, seems to require that individuals are symmetric, and that everyone has the same means to influence each others' payoffs. Yet in many applications, individuals are asymmetric. Herein, we study the effect of asymmetry in linear public good games. Individuals may differ in their endowments (their ability to contribute to a public good) and in their productivities (how effective their contributions are). Given the individuals' productivities, we ask which allocation of endowments is optimal for cooperation. To this end, we consider two notions of optimality. The first notion focuses on the resilience of cooperation. The respective endowment distribution ensures that full cooperation is feasible even under the most adverse conditions. The second notion focuses on efficiency. The corresponding endowment distribution maximizes group welfare. Using analytical methods, we fully characterize these two endowment distributions. This analysis reveals that both optimality notions favor some endowment inequality: More productive players ought to get higher endowments. Yet the two notions disagree on how unequal endowments are supposed to be. A focus on resilience results in less inequality. With additional simulations, we show that the optimal endowment allocation needs to account for both the resilience and the efficiency of cooperation.
Assuntos
Administração Financeira , Resiliência Psicológica , Humanos , Comportamento Cooperativo , Eficiência , Seguridade Social , Teoria dos JogosRESUMO
Populations evolve by accumulating advantageous mutations. Every population has some spatial structure that can be modeled by an underlying network. The network then influences the probability that new advantageous mutations fixate. Amplifiers of selection are networks that increase the fixation probability of advantageous mutants, as compared to the unstructured fully-connected network. Whether or not a network is an amplifier depends on the choice of the random process that governs the evolutionary dynamics. Two popular choices are Moran process with Birth-death updating and Moran process with death-Birth updating. Interestingly, while some networks are amplifiers under Birth-death updating and other networks are amplifiers under death-Birth updating, so far no spatial structures have been found that function as an amplifier under both types of updating simultaneously. In this work, we identify networks that act as amplifiers of selection under both versions of the Moran process. The amplifiers are robust, modular, and increase fixation probability for any mutant fitness advantage in a range r ∈ (1, 1.2). To complement this positive result, we also prove that for certain quantities closely related to fixation probability, it is impossible to improve them simultaneously for both versions of the Moran process. Together, our results highlight how the two versions of the Moran process differ and what they have in common.
Assuntos
Evolução Biológica , Modelos Biológicos , Dinâmica Populacional , Mutação , Probabilidade , Seleção GenéticaRESUMO
Direct reciprocity is a powerful mechanism for the evolution of cooperation on the basis of repeated interactions1-4. It requires that interacting individuals are sufficiently equal, such that everyone faces similar consequences when they cooperate or defect. Yet inequality is ubiquitous among humans5,6 and is generally considered to undermine cooperation and welfare7-10. Most previous models of reciprocity do not include inequality11-15. These models assume that individuals are the same in all relevant aspects. Here we introduce a general framework to study direct reciprocity among unequal individuals. Our model allows for multiple sources of inequality. Subjects can differ in their endowments, their productivities and in how much they benefit from public goods. We find that extreme inequality prevents cooperation. But if subjects differ in productivity, some endowment inequality can be necessary for cooperation to prevail. Our mathematical predictions are supported by a behavioural experiment in which we vary the endowments and productivities of the subjects. We observe that overall welfare is maximized when the two sources of heterogeneity are aligned, such that more productive individuals receive higher endowments. By contrast, when endowments and productivities are misaligned, cooperation quickly breaks down. Our findings have implications for policy-makers concerned with equity, efficiency and the provisioning of public goods.
Assuntos
Comportamento Cooperativo , Eficiência , Teoria dos Jogos , Relações Interpessoais , Fatores Socioeconômicos , Estudos de Viabilidade , Humanos , Formulação de PolíticasRESUMO
Social dilemmas occur when incentives for individuals are misaligned with group interests1-7. According to the 'tragedy of the commons', these misalignments can lead to overexploitation and collapse of public resources. The resulting behaviours can be analysed with the tools of game theory8. The theory of direct reciprocity9-15 suggests that repeated interactions can alleviate such dilemmas, but previous work has assumed that the public resource remains constant over time. Here we introduce the idea that the public resource is instead changeable and depends on the strategic choices of individuals. An intuitive scenario is that cooperation increases the public resource, whereas defection decreases it. Thus, cooperation allows the possibility of playing a more valuable game with higher payoffs, whereas defection leads to a less valuable game. We analyse this idea using the theory of stochastic games16-19 and evolutionary game theory. We find that the dependence of the public resource on previous interactions can greatly enhance the propensity for cooperation. For these results, the interaction between reciprocity and payoff feedback is crucial: neither repeated interactions in a constant environment nor single interactions in a changing environment yield similar cooperation rates. Our framework shows which feedbacks between exploitation and environment-either naturally occurring or designed-help to overcome social dilemmas.
Assuntos
Evolução Biológica , Comportamento Cooperativo , Teoria dos Jogos , Tomada de Decisões , Retroalimentação Psicológica , Processos Grupais , Probabilidade , Processos EstocásticosRESUMO
In repeated interactions, players can use strategies that respond to the outcome of previous rounds. Much of the existing literature on direct reciprocity assumes that all competing individuals use the same strategy space. Here, we study both learning and evolutionary dynamics of players that differ in the strategy space they explore. We focus on the infinitely repeated donation game and compare three natural strategy spaces: memory-1 strategies, which consider the last moves of both players, reactive strategies, which respond to the last move of the co-player, and unconditional strategies. These three strategy spaces differ in the memory capacity that is needed. We compute the long term average payoff that is achieved in a pairwise learning process. We find that smaller strategy spaces can dominate larger ones. For weak selection, unconditional players dominate both reactive and memory-1 players. For intermediate selection, reactive players dominate memory-1 players. Only for strong selection and low cost-to-benefit ratio, memory-1 players dominate the others. We observe that the supergame between strategy spaces can be a social dilemma: maximum payoff is achieved if both players explore a larger strategy space, but smaller strategy spaces dominate.
Assuntos
Evolução Biológica , Teoria dos Jogos , Comportamento Cooperativo , Humanos , AprendizagemRESUMO
A game of rock-paper-scissors is an interesting example of an interaction where none of the pure strategies strictly dominates all others, leading to a cyclic pattern. In this work, we consider an unstable version of rock-paper-scissors dynamics and allow individuals to make behavioural mistakes during the strategy execution. We show that such an assumption can break a cyclic relationship leading to a stable equilibrium emerging with only one strategy surviving. We consider two cases: completely random mistakes when individuals have no bias towards any strategy and a general form of mistakes. Then, we determine conditions for a strategy to dominate all other strategies. However, given that individuals who adopt a dominating strategy are still prone to behavioural mistakes in the observed behaviour, we may still observe extinct strategies. That is, behavioural mistakes in strategy execution stabilise evolutionary dynamics leading to an evolutionary stable and, potentially, mixed co-existence equilibrium.
Assuntos
Teoria dos Jogos , Evolução Biológica , HumanosRESUMO
The fixation probability of a single mutant invading a population of residents is among the most widely-studied quantities in evolutionary dynamics. Amplifiers of natural selection are population structures that increase the fixation probability of advantageous mutants, compared to well-mixed populations. Extensive studies have shown that many amplifiers exist for the Birth-death Moran process, some of them substantially increasing the fixation probability or even guaranteeing fixation in the limit of large population size. On the other hand, no amplifiers are known for the death-Birth Moran process, and computer-assisted exhaustive searches have failed to discover amplification. In this work we resolve this disparity, by showing that any amplification under death-Birth updating is necessarily bounded and transient. Our boundedness result states that even if a population structure does amplify selection, the resulting fixation probability is close to that of the well-mixed population. Our transience result states that for any population structure there exists a threshold râ such that the population structure ceases to amplify selection if the mutant fitness advantage r is larger than râ. Finally, we also extend the above results to δ-death-Birth updating, which is a combination of Birth-death and death-Birth updating. On the positive side, we identify population structures that maintain amplification for a wide range of values r and δ. These results demonstrate that amplification of natural selection depends on the specific mechanisms of the evolutionary process.
Assuntos
Modelos Biológicos , Dinâmica Populacional/estatística & dados numéricos , Seleção Genética/fisiologia , Biologia Computacional , Mutação/fisiologia , Densidade Demográfica , Processos EstocásticosRESUMO
Resources are rarely distributed uniformly within a population. Heterogeneity in the concentration of a drug, the quality of breeding sites, or wealth can all affect evolutionary dynamics. In this study, we represent a collection of properties affecting the fitness at a given location using a color. A green node is rich in resources while a red node is poorer. More colors can represent a broader spectrum of resource qualities. For a population evolving according to the birth-death Moran model, the first question we address is which structures, identified by graph connectivity and graph coloring, are evolutionarily equivalent. We prove that all properly two-colored, undirected, regular graphs are evolutionarily equivalent (where "properly colored" means that no two neighbors have the same color). We then compare the effects of background heterogeneity on properly two-colored graphs to those with alternative schemes in which the colors are permuted. Finally, we discuss dynamic coloring as a model for spatiotemporal resource fluctuations, and we illustrate that random dynamic colorings often diminish the effects of background heterogeneity relative to a proper two-coloring.
Assuntos
Evolução Biológica , Modelos Biológicos , Animais , Cor , Biologia Computacional , Gráficos por Computador , Simulação por Computador , Aptidão Genética , Genética Populacional/estatística & dados numéricos , Humanos , Conceitos Matemáticos , Mutação , Dinâmica Populacional/estatística & dados numéricos , Probabilidade , Análise Espaço-TemporalRESUMO
Indirect reciprocity is a mechanism for cooperation based on shared moral systems and individual reputations. It assumes that members of a community routinely observe and assess each other and that they use this information to decide who is good or bad, and who deserves cooperation. When information is transmitted publicly, such that all community members agree on each other's reputation, previous research has highlighted eight crucial moral systems. These "leading-eight" strategies can maintain cooperation and resist invasion by defectors. However, in real populations individuals often hold their own private views of others. Once two individuals disagree about their opinion of some third party, they may also see its subsequent actions in a different light. Their opinions may further diverge over time. Herein, we explore indirect reciprocity when information transmission is private and noisy. We find that in the presence of perception errors, most leading-eight strategies cease to be stable. Even if a leading-eight strategy evolves, cooperation rates may drop considerably when errors are common. Our research highlights the role of reliable information and synchronized reputations to maintain stable moral systems.
RESUMO
Humans routinely use conditionally cooperative strategies when interacting in repeated social dilemmas. They are more likely to cooperate if others cooperated before, and are ready to retaliate if others defected. To capture the emergence of reciprocity, most previous models consider subjects who can only choose from a restricted set of representative strategies, or who react to the outcome of the very last round only. As players memorize more rounds, the dimension of the strategy space increases exponentially. This increasing computational complexity renders simulations for individuals with higher cognitive abilities infeasible, especially if multiplayer interactions are taken into account. Here, we take an axiomatic approach instead. We propose several properties that a robust cooperative strategy for a repeated multiplayer dilemma should have. These properties naturally lead to a unique class of cooperative strategies, which contains the classical Win-Stay Lose-Shift rule as a special case. A comprehensive numerical analysis for the prisoner's dilemma and for the public goods game suggests that strategies of this class readily evolve across various memory-n spaces. Our results reveal that successful strategies depend not only on how cooperative others were in the past but also on the respective context of cooperation.
Assuntos
Memória/fisiologia , Modelos Neurológicos , HumanosRESUMO
There are deep, yet largely unexplored, connections between computer science and biology. Both disciplines examine how information proliferates in time and space. Central results in computer science describe the complexity of algorithms that solve certain classes of problems. An algorithm is deemed efficient if it can solve a problem in polynomial time, which means the running time of the algorithm is a polynomial function of the length of the input. There are classes of harder problems for which the fastest possible algorithm requires exponential time. Another criterion is the space requirement of the algorithm. There is a crucial distinction between algorithms that can find a solution, verify a solution, or list several distinct solutions in given time and space. The complexity hierarchy that is generated in this way is the foundation of theoretical computer science. Precise complexity results can be notoriously difficult. The famous question whether polynomial time equals nondeterministic polynomial time (i.e., P = NP) is one of the hardest open problems in computer science and all of mathematics. Here, we consider simple processes of ecological and evolutionary spatial dynamics. The basic question is: What is the probability that a new invader (or a new mutant) will take over a resident population? We derive precise complexity results for a variety of scenarios. We therefore show that some fundamental questions in this area cannot be answered by simple equations (assuming that P is not equal to NP).
Assuntos
Evolução Biológica , Ecologia , Algoritmos , Biologia Computacional , Ecossistema , ProbabilidadeRESUMO
In evolutionary game theory interactions between individuals are often assumed obligatory. However, in many real-life situations, individuals can decide to opt out of an interaction depending on the information they have about the opponent. We consider a simple evolutionary game theoretic model to study such a scenario, where at each encounter between two individuals the type of the opponent (cooperator/defector) is known with some probability, and where each individual either accepts or opts out of the interaction. If the type of the opponent is unknown, a trustful individual accepts the interaction, whereas a suspicious individual opts out of the interaction. If either of the two individuals opt out both individuals remain without an interaction. We show that in the prisoners dilemma optional interactions along with suspicious behaviour facilitates the emergence of trustful cooperation.
Assuntos
Comportamento Cooperativo , Relações Interpessoais , Dilema do Prisioneiro , Evolução Biológica , Teoria dos Jogos , Humanos , ConfiançaRESUMO
The competition for resources among cells, individuals or species is a fundamental characteristic of evolution. Biological all-pay auctions have been used to model situations where multiple individuals compete for a single resource. However, in many situations multiple resources with various values exist and single reward auctions are not applicable. We generalize the model to multiple rewards and study the evolution of strategies. In biological all-pay auctions the bid of an individual corresponds to its strategy and is equivalent to its payment in the auction. The decreasingly ordered rewards are distributed according to the decreasingly ordered bids of the participating individuals. The reproductive success of an individual is proportional to its fitness given by the sum of the rewards won minus its payments. Hence, successful bidding strategies spread in the population. We find that the results for the multiple reward case are very different from the single reward case. While the mixed strategy equilibrium in the single reward case with more than two players consists of mostly low-bidding individuals, we show that the equilibrium can convert to many high-bidding individuals and a few low-bidding individuals in the multiple reward case. Some reward values lead to a specialization among the individuals where one subpopulation competes for the rewards and the other subpopulation largely avoids costly competitions. Whether the mixed strategy equilibrium is an evolutionarily stable strategy (ESS) depends on the specific values of the rewards.
Assuntos
Evolução Biológica , Comportamento Competitivo , Recompensa , Teoria dos Jogos , Aptidão Genética , Modelos Biológicos , ReproduçãoRESUMO
A fundamental question in biology is the following: what is the time scale that is needed for evolutionary innovations? There are many results that characterize single steps in terms of the fixation time of new mutants arising in populations of certain size and structure. But here we ask a different question, which is concerned with the much longer time scale of evolutionary trajectories: how long does it take for a population exploring a fitness landscape to find target sequences that encode new biological functions? Our key variable is the length, L, of the genetic sequence that undergoes adaptation. In computer science there is a crucial distinction between problems that require algorithms which take polynomial or exponential time. The latter are considered to be intractable. Here we develop a theoretical approach that allows us to estimate the time of evolution as function of L. We show that adaptation on many fitness landscapes takes time that is exponential in L, even if there are broad selection gradients and many targets uniformly distributed in sequence space. These negative results lead us to search for specific mechanisms that allow evolution to work on polynomial time scales. We study a regeneration process and show that it enables evolution to work in polynomial time.
Assuntos
Evolução Biológica , Biologia Computacional/métodos , Algoritmos , Cadeias de Markov , Modelos BiológicosRESUMO
BACKGROUND: Rifampicin or rifampin (R) is a common drug used to treat inactive meningitis, cholestatic pruritus and tuberculosis (TB), and it is generally prescribed for long-term administration under regulated dosages. Constant monitoring of rifampicin is important for controlling the side effects and preventing overdose caused by chronic medication. In this study, we present an easy to use, effective and less costly method for detecting residual rifampicin in urine samples using protein (bovine serum albumin, BSA)-stabilized gold nanoclusters (BSA-Au NCs) adsorbed on a paper substrate in which the concentration of rifampicin in urine can be detected via fluorescence quenching. The intensity of the colorimetric assay performed on the paper-based platforms can be easily captured using a digital camera and subsequently analyzed. RESULTS: The decreased fluorescence intensity of BSA-Au NCs in the presence of rifampicin allows for the sensitive detection of rifampicin in a range from 0.5 to 823 µg/mL. The detection limit for rifampicin was measured as 70 ng/mL. The BSA-Au NCs were immobilized on a wax-printed paper-based platform and used to conduct real-time monitoring of rifampicin in urine. CONCLUSION: We have developed a robust, cost-effective, and portable point-of-care medical diagnostic platform for the detection of rifampicin in urine based on the ability of rifampicin to quench the fluorescence of immobilized BSA-Au NCs on wax-printed papers. The paper-based assay can be further used for the detection of other specific analytes via surface modification of the BSA in BSA-Au NCs and offers a useful tool for monitoring other diseases.
Assuntos
Antibióticos Antituberculose/urina , Ouro/química , Nanopartículas Metálicas/química , Rifampina/urina , Espectrometria de Fluorescência/métodos , Animais , Técnicas Biossensoriais/métodos , Bovinos , Humanos , Limite de Detecção , Nanopartículas Metálicas/ultraestrutura , Papel , Sistemas Automatizados de Assistência Junto ao Leito , Soroalbumina Bovina/químicaRESUMO
The basic idea of evolutionary game theory is that payoff determines reproductive rate. Successful individuals have a higher payoff and produce more offspring. But in evolutionary and ecological situations there is not only reproductive rate but also carrying capacity. Individuals may differ in their exposure to density limiting effects. Here we explore an alternative approach to evolutionary game theory by assuming that the payoff from the game determines the carrying capacity of individual phenotypes. Successful strategies are less affected by density limitation (crowding) and reach higher equilibrium abundance. We demonstrate similarities and differences between our framework and the standard replicator equation. Our equation is defined on the positive orthant, instead of the simplex, but has the same equilibrium points as the replicator equation. Linear stability analysis produces the classical conditions for asymptotic stability of pure strategies, but the stability properties of internal equilibria can differ in the two frameworks. For example, in a two-strategy game with an internal equilibrium that is always stable under the replicator equation, the corresponding equilibrium can be unstable in the new framework resulting in a limit cycle.
Assuntos
Evolução Biológica , Teoria dos Jogos , Modelos Biológicos , Reprodução/fisiologia , Algoritmos , Animais , Humanos , Dinâmica Populacional , Crescimento DemográficoRESUMO
Natural selection is usually studied between mutants that differ in reproductive rate, but are subject to the same population structure. Here we explore how natural selection acts on mutants that have the same reproductive rate, but different population structures. In our framework, population structure is given by a graph that specifies where offspring can disperse. The invading mutant disperses offspring on a different graph than the resident wild-type. We find that more densely connected dispersal graphs tend to increase the invader's fixation probability, but the exact relationship between structure and fixation probability is subtle. We present three main results. First, we prove that if both invader and resident are on complete dispersal graphs, then removing a single edge in the invader's dispersal graph reduces its fixation probability. Second, we show that for certain island models higher invader's connectivity increases its fixation probability, but the magnitude of the effect depends on the exact layout of the connections. Third, we show that for lattices the effect of different connectivity is comparable to that of different fitness: for large population size, the invader's fixation probability is either constant or exponentially small, depending on whether it is more or less connected than the resident.
Assuntos
Evolução Biológica , Seleção Genética , Mutação , Dinâmica Populacional , ProbabilidadeRESUMO
The field of indirect reciprocity investigates how social norms can foster cooperation when individuals continuously monitor and assess each other's social interactions. By adhering to certain social norms, cooperating individuals can improve their reputation and, in turn, receive benefits from others. Eight social norms, known as the "leading eight," have been shown to effectively promote the evolution of cooperation as long as information is public and reliable. These norms categorize group members as either 'good' or 'bad'. In this study, we examine a scenario where individuals instead assign nuanced reputation scores to each other, and only cooperate with those whose reputation exceeds a certain threshold. We find both analytically and through simulations that such quantitative assessments are error-correcting, thus facilitating cooperation in situations where information is private and unreliable. Moreover, our results identify four specific norms that are robust to such conditions, and may be relevant for helping to sustain cooperation in natural populations.
Assuntos
Comportamento Cooperativo , Modelos Psicológicos , Humanos , Normas Sociais , Interação Social , Evolução BiológicaRESUMO
Many human interactions feature the characteristics of social dilemmas where individual actions have consequences for the group and the environment. The feedback between behavior and environment can be studied with the framework of stochastic games. In stochastic games, the state of the environment can change, depending on the choices made by group members. Past work suggests that such feedback can reinforce cooperative behaviors. In particular, cooperation can evolve in stochastic games even if it is infeasible in each separate repeated game. In stochastic games, participants have an interest in conditioning their strategies on the state of the environment. Yet in many applications, precise information about the state could be scarce. Here, we study how the availability of information (or lack thereof) shapes evolution of cooperation. Already for simple examples of two state games we find surprising effects. In some cases, cooperation is only possible if there is precise information about the state of the environment. In other cases, cooperation is most abundant when there is no information about the state of the environment. We systematically analyze all stochastic games of a given complexity class, to determine when receiving information about the environment is better, neutral, or worse for evolution of cooperation.
Assuntos
Comportamento Cooperativo , Eventos de Massa , HumanosRESUMO
Many scenarios in the living world, where individual organisms compete for winning positions (or resources), have properties of auctions. Here we study the evolution of bids in biological auctions. For each auction, n individuals are drawn at random from a population of size N. Each individual makes a bid which entails a cost. The winner obtains a benefit of a certain value. Costs and benefits are translated into reproductive success (fitness). Therefore, successful bidding strategies spread in the population. We compare two types of auctions. In "biological all-pay auctions", the costs are the bid for every participating individual. In "biological second price all-pay auctions", the cost for everyone other than the winner is the bid, but the cost for the winner is the second highest bid. Second price all-pay auctions are generalizations of the "war of attrition" introduced by Maynard Smith. We study evolutionary dynamics in both types of auctions. We calculate pairwise invasion plots and evolutionarily stable distributions over the continuous strategy space. We find that the average bid in second price all-pay auctions is higher than in all-pay auctions, but the average cost for the winner is similar in both auctions. In both cases, the average bid is a declining function of the number of participants, n. The more individuals participate in an auction the smaller is the chance of winning, and thus expensive bids must be avoided.