Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 223(Pt 24)2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33161378

RESUMO

We investigated the role of ambient temperature in departure from wintering areas of migratory black-headed buntings in spring. Birds transferred at 22 and 35°C to long days were compared with one another and with controls held on short days for indices of readiness to migrate (Zugunruhe, fattening, mass gain), levels of testosterone and gonadal recrudescence. Temperature affected the development of migratory behaviour and physiology: buntings under long days at 35°C, compared with those at 22°C, showed altered migratory behaviour (daily activity and Zugunruhe onset), and enhanced muscle growth and plasma testosterone levels, but showed no effect on testis growth. Temperature was perceived at both peripheral and central levels, and affected multiple molecular drivers culminating into the migratory phenotype. This was evidenced by post-mortem comparison of the expression of 13 genes with known functions in the skin (temperature-sensitive TRP channels: trpv4 and trpm8), hypothalamus and/or midbrain (migration-linked genes: th, ddc, adcyap1 and vps13a) and flight muscles (muscle growth associated genes: ar, srd5a3, pvalb, mtor, myod, mstn and hif1a). In photostimulated birds, the expression of trpv4 in skin, th in the hypothalamus and midbrain, and srd5a3, ar, pvalb and mtor in flight muscle, in parallel with testosterone levels, was greater at 35°C than at 22°C. These results demonstrate the role of ambient temperature in development of the spring migration phenotype, and suggest that transcriptional responsiveness to temperature is a component of the overall adaptive strategy in latitudinal songbird migrants for timely departure from wintering areas in spring.


Assuntos
Migração Animal , Aves Canoras , Animais , Masculino , Fotoperíodo , Estações do Ano , Aves Canoras/genética , Temperatura
2.
Chronobiol Int ; 41(1): 105-126, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38108138

RESUMO

Biological clocks regulate the behavior and physiology of animals by tracking the local time using diverse time cues. Social cues are relevant in studying the behavior of gregarious animals, but these cues have not been widely studied in birds. Temporal information for circadian timekeeping is socially communicated through visual, physical, olfactory, and auditory means. We examined the efficacy of pulsatile social interactions on locomotor activity and its associated characteristics such as distribution profile of rest and activity, total counts, activity duration, phase shift in activity onset, and circadian periodicity in spotted munia. Besides, we analyzed the effect of such social interactions on their body mass. Spotted munia exhibited phase shift in the onset of activity when subjected to social isolation, but these cues could not affect their circadian periodicity. In Pair as well as in Group, social isolation led to increased activity and activity duration, and decreased body mass in guests relative to the host bird. Our results suggest that the circadian rhythm of locomotor activity in spotted munia is quite sensitive to socialization and isolation, and isolation is detrimental for the birds. Consistent with these observations, the decline in body mass revealed the physiological consequences of social isolation on spotted munia.


Assuntos
Aves , Ritmo Circadiano , Animais , Ritmo Circadiano/fisiologia , Aves/fisiologia
3.
Environ Sci Pollut Res Int ; 30(33): 81226-81235, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37316627

RESUMO

Every year, a combination of summer with extreme weather events such as "heatwaves" affects the life of organisms on earth. Previous studies on humans, rodents, and some birds signify the impact of heat stress on their survival and existence. Over the past four decades, the frequency of heatwaves has increased because of global warming. Therefore, we performed a longitudinal study on a resident bird species, the spotted munia (Lonchura punctulata) by simulating a heatwave-like condition. We were interested in understanding how a Passeriformes native to a sub-tropical country deals with heatwave-like conditions. Initially, the birds were subjected to room temperature (25 ± 2 °C; T1) for 10 days, followed by a simulated heatwave-like condition (42 ± 1 °C; T2) for 7 days and again back to room temperature (25 ± 2 °C; RT1) for the next 7 days. To elucidate how birds cope with simulated heatwave conditions, we examined different behavioral and physiological parameters. We found that although heat stress significantly reduced total activity counts and food intake but, the body mass, blood glucose, and hemoglobin levels remained unaffected by any of the temperature conditions. Furthermore, HSP70 and biochemical markers of liver injuries such as ALP, AST, ALT, bilirubin direct, and bilirubin total were found elevated in response to the simulated heatwave-like condition, whereas uric acid and triglyceride were reduced. Creatinine and total protein levels were unaffected by the heatwave. The post heatwave treatment resulted in a rebound of the behavioral and physiological responses, but the recovered responses were not equivalent to the pre-heatwave levels (T1 conditions). Thus, the present study demonstrates heatwave-associated behavioral and physiological changes in a resident passerine finch which has tremendous physiological flexibility.


Assuntos
Temperatura Alta , Passeriformes , Humanos , Animais , Temperatura , Estudos Longitudinais , Passeriformes/fisiologia , Estações do Ano
4.
Sci Rep ; 11(1): 12823, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140553

RESUMO

We investigated time course of photoperiodically driven transcriptional responses in physiologically contrasting seasonal life-history states in migratory blackheaded buntings. Birds exhibiting unstimulated winter phenotype (photosensitive state; responsive to photostimulation) under 6-h short days, and regressed summer phenotype (photorefractory state; unresponsiveness to photostimulation) under 16-h long days, were released into an extended light period up to 22 h of the day. Increased tshß and dio2, and decreased dio3 mRNA levels in hypothalamus, and low prdx4 and high il1ß mRNA levels in blood confirmed photoperiodic induction by hour 18 in photosensitive birds. Further, at hours 10, 14, 18 and 22 of light exposure, the comparison of hypothalamus RNA-Seq results revealed transcriptional differences within and between states. Particularly, we found reduced expression at hour 14 of transthyretin and proopiomelanocortin receptor, and increased expression at hour 18 of apolipoprotein A1 and carbon metabolism related genes in the photosensitive state. Similarly, valine, leucine and isoleucine degradation pathway genes and superoxide dismutase 1 were upregulated, and cocaine- and amphetamine-regulated transcript and gastrin-releasing peptide were downregulated in the photosensitive state. These results show life-history-dependent activation of hypothalamic molecular pathways involved in initiation and maintenance of key biological processes as early as on the first long day.


Assuntos
Migração Animal/fisiologia , Hipotálamo/metabolismo , Estágios do Ciclo de Vida/genética , Fotoperíodo , Estações do Ano , Aves Canoras/genética , Transcrição Gênica , Transcriptoma/genética , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , RNA-Seq , Aves Canoras/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa