Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(7): 4230-4239, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33586719

RESUMO

We report the evolution of the thermoelectric and mechanical properties of n-type SnSe obtained by iodine doping at the Se site. The thermoelectric performance of n-type SnSe is detailed in the temperature range starting from 150 K ≤ T ≤ 700 K. The power factor of 0.25% iodine doped SnSe is found to be 0.33 mW m-1 K-2 at 700 K, comparable to that of the other monovalent doped n-type SnSe. The temperature-dependent electrical conductivity of the undoped and iodine doped SnSe samples is corroborated by using the adiabatic small polaron hopping model. A very low value of thermal conductivity, 0.62 W m-1 K-1, is obtained at 300 K and is comparable to that of SnSe single crystals. The low thermal conductivity of n-type polycrystalline SnSe is understood by taking into account the anharmonic phonon vibrations induced by the incorporation of heavy iodine atoms at the Se sites as well as the structural hierarchy of the compound. Besides, iodine doping is found to improve the reduced Young's modulus and hardness values of SnSe, which is highly desirable for thermoelectric device applications.

2.
ACS Omega ; 6(5): 3900-3909, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33585769

RESUMO

We report a systematic investigation of the microstructure and thermoelectric properties of refractory element-filled nanostructured Co4Sb12 skutterudites. The refractory tantalum (Ta) metal-filled Co4Sb12 samples (Ta x Co4Sb12 (x = 0, 0.4, 0.6, and 0.8)) are synthesized using a solid-state synthesis route. All the samples are composed of a single skutterudite phase. Meanwhile, nanometer-sized equiaxed grains are present in the Ta0.2Co4Sb12 and Ta0.4Co4Sb12 samples, and bimodal distributions of equiaxed grains and elongated grains are observed in Ta0.6Co4Sb12 and Ta0.8Co4Sb12 samples. The dominant carrier type changes from electrons (n-type) to holes (p-type) with an increase in Ta concentration in the samples. The power factor of the Ta0.6Co4Sb12 sample is increased to 2.12 mW/mK2 at 623 K due to the 10-fold reduction in electrical resistivity. The lowest lattice thermal conductivity observed for Ta0.6Co4Sb12 indicates the rattling action of Ta atoms and grain boundary scattering. Rietveld refinement of XRD data and the analysis of lattice thermal conductivity data using the Debye model confirm that Ta occupies at the voids as well as the Co site. The figure of merit (ZT) of ∼0.4 is obtained in the Ta0.6Co4Sb12 sample, which is comparable to single metal-filled p-type skutterudites reported to date. The thermoelectric properties of the refractory Ta metal-filled skutterudites might be useful to achieve both n-type and p-type thermoelectric legs using a single filler atom and could be one of replacements of the rare earth-filled skutterudites with improved thermoelectric properties.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa