Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38486365

RESUMO

AIMS: This study aimed to isolate plant growth and drought tolerance-promoting bacteria from the nutrient-poor rhizosphere soil of Thar desert plants and unravel their molecular mechanisms of plant growth promotion. METHODS AND RESULTS: Among our rhizobacterial isolates, Enterobacter cloacae C1P-IITJ, Kalamiella piersonii J4-IITJ, and Peribacillus frigoritolerans T7-IITJ, significantly enhanced root and shoot growth (4-5-fold) in Arabidopsis thaliana under PEG-induced drought stress. Whole genome sequencing and biochemical analyses of the non-pathogenic bacterium T7-IITJ revealed its plant growth-promoting traits, viz., solubilization of phosphate (40-73 µg/ml), iron (24 ± 0.58 mm halo on chrome azurol S media), and nitrate (1.58 ± 0.01 µg/ml nitrite), along with production of exopolysaccharides (125 ± 20 µg/ml) and auxin-like compounds (42.6 ± 0.05 µg/ml). Transcriptome analysis of A. thaliana inoculated with T7-IITJ and exposure to drought revealed the induction of 445 plant genes (log2fold-change > 1, FDR < 0.05) for photosynthesis, auxin and jasmonate signalling, nutrient uptake, redox homeostasis, and secondary metabolite biosynthesis pathways related to beneficial bacteria-plant interaction, but repression of 503 genes (log2fold-change < -1) including many stress-responsive genes. T7-IITJ enhanced proline 2.5-fold, chlorophyll 2.5-2.8-fold, iron 2-fold, phosphate 1.6-fold, and nitrogen 4-fold, and reduced reactive oxygen species 2-4.7-fold in plant tissues under drought. T7-IITJ also improved the germination and seedling growth of Tephrosia purpurea, Triticum aestivum, and Setaria italica under drought and inhibited the growth of two plant pathogenic fungi, Fusarium oxysporum, and Rhizoctonia solani. CONCLUSIONS: P. frigoritolerans T7-IITJ is a potent biofertilizer that regulates plant genes to promote growth and drought tolerance.


Assuntos
Arabidopsis , Bacillus , Arabidopsis/genética , Arabidopsis/metabolismo , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Bactérias , Fosfatos/metabolismo , Ferro/metabolismo , Raízes de Plantas/microbiologia , Secas
2.
Genomics ; 114(5): 110466, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36041637

RESUMO

The global COVID-19 pandemic continues due to emerging Severe Acute Respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC). Here, we performed comprehensive analysis of in-house sequenced SARS-CoV-2 genome mutations dynamics in the patients infected with the VOCs - Delta and Omicron, within Recovered and Mortality patients. Statistical analysis highlighted significant mutations - T4685A, N4992N, and G5063S in RdRp; T19R in NTD spike; K444N and N532H in RBD spike, associated with Delta mortality. Mutations, T19I in NTD spike, Q493R and N440K in the RBD spike were significantly associated with Omicron mortality. We performed molecular docking for possible effect of significant mutations on the binding of Remdesivir. We found that Remdesivir showed less binding efficacy with the mutant Spike protein of both Delta and Omicron mortality compared to recovered patients. This indicates that mortality associated mutations could have a modulatory effect on drug binding which could be associated with disease outcome.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Simulação de Acoplamento Molecular , Mutação , Pandemias , RNA Polimerase Dependente de RNA , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
3.
Arch Microbiol ; 204(8): 516, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869333

RESUMO

A gram-stain-negative, endo-spore forming, facultatively anaerobic, motile, rod-shaped bacterial strain SM69T, isolated from soil samples of Rohtak, Haryana, India was characterized using polyphasic approach. White colonies were 2-3 mm, in diameter and growth occurred between 20 and 55 °C, pH 6.0-10.0 with 0-2.0% (w/v) NaCl. Based on 16S rRNA gene sequence similarity the strain is placed in the genus Paenibacillus as it is closely related to 'Paenibacillus tyrfis MSt1T' (99.7%) and P. elgii SD17T (99.6%). The cell wall peptidoglycan contained meso-diaminopimelic acid. The dominant fatty acids included anteiso-C15: 0 (50%), C16: 0 (12%) and anteiso-C17: 0 (10%). Major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The size of the draft genome was 7,848,017 bp, with 53.1% G+C content. dDDH (51.6%) and ANI (93.5%) of strain SM69T with its close relatives indicates that it represents a novel species, for which the name Paenibacillus oleatilyticus sp. nov. (Type strain SM69T = MCC 3064T = JCM 33981T = KACC 21649T) is proposed.


Assuntos
Paenibacillus , Solo , Técnicas de Tipagem Bacteriana , DNA Bacteriano/química , DNA Bacteriano/genética , Ácidos Graxos/análise , Hibridização de Ácido Nucleico , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
4.
Indian J Microbiol ; 61(4): 441-448, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34744199

RESUMO

Biocatalysts are a biomolecule of interest for various biotechnological applications. Non-reusability and poor stability of especially enzymes has always limited their applications in large-scale processing units. Nanotechnology paves a way by conjugating the biocatalysts on different matrices. It predominantly enables nanomaterials to overcome the limited efficacy of conventional biocatalysts. Nanomaterial conjugated nanobiocatalyst have enhanced catalytic properties, selectivity, and stability. Nanotechnology extended the flexibility to engineer biocatalysts for various innovative and predictive catalyses. So developed nanobiocatalyst harbors remarkable properties and has potential applications in diverse biotechnological sectors. This article summaries various developments made in the area of nanobiocatalyst towards their applications in biotechnological industries. Novel nanobiocatalyst engineering is an area of critical importance for harnessing the biotechnological potential.

5.
Indian J Microbiol ; 61(4): 487-496, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34744204

RESUMO

Titanium dioxide (TiO2) is widely characterized for its application in clinical diagnostics, therapeutics, cosmetics, nutrition, and environment management. Despite enormous potential, its dependence on ultraviolet (UV) light for photocatalytic activity limits its commercialization. Accordingly in the present study, a photo catalytically superior ternary complex of TiO2 with Cadmium sulfide/Zinc sulfide (CdS/ZnS) has been synthesized, as well as, characterized for photo-induced antimicrobial activity. The band gap of crystalline TiO2/CdS/ZnS nanocomposite has been reduced (2.26 eV) and nanocomposite has shown the optimal photo-activation at 590 nm. TiO2 nanocomposite has significant bactericidal activity in visible light (P < 0.01). Exposure of the TiO2 nanocomposite affected the cellular metabolism by altering the 1681 metabolic features (P < 0.001) culminating in poor cellular survivability. Additionally, photo-induced reactive oxygen species generation through nanocomposite disrupts the microbial cellular structure. The present study synthesized photocatalytic nanocomposite as well as unveiled the holistic cellular effect of theTiO2/CdS/ZnS nanocomposite. Additionally, the present study also indicated the potential application of TiO2/CdS/ZnS nanocomposite for sustainable environment management, therapeutics, and various industries. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12088-021-00973-z.

6.
Indian J Microbiol ; 59(3): 336-343, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31388211

RESUMO

Exploration of novel bioactive molecules or potentiation of the existing bioactive molecules is necessary to reduce the burden of the infectious diseases for the better human health. Curcumin is a promising molecule with huge therapeutic potential. Despite high bioactivity, its therapeutic suitability is shadowed by poor bioavailability, limited aqueous solubility, and short shelf life. Nanotechnology has generated new avenues to overcome these challenges. In the current study polymer assisted nanoliposomes, PEGylated Curcumin nanoliposomes with good loading efficiency were prepared. These particles have shown 1000 fold enhanced curcumin hydrophilicity and tenfold higher stability. In vitro release kinetic indicates two fold higher curcumin release in the simulated gastric and intestinal environment. Various bioactivity assays have confirmed enhanced bioactivity of nanocurcmin in comparison of the native curcumin. PEGylated Curcumin nanoliposomes could be employed for treating various diseases.

7.
Arch Microbiol ; 200(2): 203-217, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29188341

RESUMO

The human gut contains a plethora of microbes, providing a platform for metabolic interaction between the host and microbiota. Metabolites produced by the gut microbiota act as a link between gut microbiota and its host. These metabolites act as messengers having the capacity to alter the gut microbiota. Recent advances in the characterization of the gut microbiota and its symbiotic relationship with the host have provided a platform to decode metabolic interactions. The human gut microbiota, a crucial component for dietary metabolism, is shaped by the genetic, epigenetic and dietary factors. The metabolic potential of gut microbiota explains its significance in host health and diseases. The knowledge of interactions between microbiota and host metabolism, as well as modification of microbial ecology, is really beneficial to have effective therapeutic treatments for many diet-related diseases in near future. This review cumulates the information to map the role of human gut microbiota in dietary component metabolism, the role of gut microbes derived metabolites in human health and host-microbe metabolic interactions in health and diseases.


Assuntos
Bactérias/metabolismo , Dieta , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Metabolismo dos Carboidratos/fisiologia , Humanos , Simbiose
8.
Biometals ; 31(2): 147-159, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29392447

RESUMO

TiO2 is a well-known material and has remarkable physical, chemical and biocompatible properties which have made it a suitable material in the biological world. The development of new TiO2-based materials is strongly required to achieve desired properties and applications. A large number of TiO2 composites have been synthesized and applied in various fields. The present review reports the utility of TiO2 and its composites in biosensing, in Photodynamic Therapy, as an antimicrobial agent and as a nanodrug carrier. The aim of this review is to discuss the biological application of the TiO2 based materials and some recent advancement in TiO2 to enhance its application in the biological world.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Portadores de Fármacos/uso terapêutico , Titânio/uso terapêutico , Anti-Infecciosos/uso terapêutico , Materiais Biocompatíveis/química , Técnicas Biossensoriais/tendências , Portadores de Fármacos/química , Humanos , Nanopartículas/uso terapêutico , Fotoquimioterapia/tendências , Titânio/química
9.
Indian J Microbiol ; 58(3): 294-300, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30013273

RESUMO

The human gut microbiome has a significant role in host physiology; however its role in gluten catabolism is debatable. Present study explores the role of human gut microbes in gluten catabolism and a native human gut microbe Cellulomonas sp. HM71 was identified. SSU rDNA analysis has described human gut microbiome structure and also confirmed the permanent residentship of Cellulomonas sp. HM71. Catabolic potential of Cellulomonas sp. HM71 to cleave antigenic gluten peptides indicates presence of candidate gene encoding biocatalytic machinery. Genome analysis has identified the presence of gene encoding S9A serine protease family-prolyl endopeptidase, with Ser591, Asp664 and His685 signature residues. Cellulomonas sp. HM71 prolyl endopeptidase activity was found optimal at pH 7.0 and 37 °C with a KM of 35.53 µmol and specifically cleaves at proline residue. Current study describes the gluten catabolism potential of Cellulomonas sp. HM71 depicting possible role of human gut microbes in gluten catabolism to confer resistance mechanisms for the onset of celiac diseases in populations with gluten diet.

10.
Indian J Microbiol ; 57(3): 299-306, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28904414

RESUMO

A metagenomic library of sea sediment metagenome containing 245,000 recombinant clones representing ~ 2.45 Gb of sea sediment microbial DNA was constructed. Two unique arsenic resistance clones, A7 and A12, were identified by selection on sodium arsenite containing medium. Clone A7 showed a six-fold higher resistance to arsenate [As(V)], a three-fold higher resistance to arsenite [As(III)] and significantly increased resistance to antimony [Sb(III)], while clone A12 showed increased resistance only to sodium arsenite and not to the other two metalloids. The clones harbored inserts of 8.848 Kb and 6.771 Kb, respectively. Both the clones possess A + T rich nucleotide sequence with similarity to sequences from marine psychrophilic bacteria. Sequence and transposon-mutagenesis based analysis revealed the presence of a putative arsenate reductase (ArsC), a putative arsenite efflux pump (ArsB/ACR) and a putative NADPH-dependent FMN reductase (ArsH) in both the clones and also a putative transcriptional regulatory protein (ArsR) in pA7. The increased resistance of clone A7 to As(V), As(III) and Sb(III) indicates functional expression of ArsC and ArsB proteins from pA7. The absence of increased As(V) resistance in clone A12 may be due to the expression of a possible inactive ArsC, as conserved Arg60 residue in this protein was replaced by Glu60, while the absence of Sb(III) resistance may be due to the presence of an ACR3p-type arsenite pump, which is known to lack antimony transport ability.

11.
Indian J Gastroenterol ; 43(1): 129-144, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38334893

RESUMO

Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic modality within the domain of inflammatory bowel disease (IBD). While FMT has secured approval and demonstrated efficacy in addressing recurrent and refractory Clostridioides difficile infection, its application in IBD remains an area of active exploration and research. The current status of FMT in IBD reflects a nuanced landscape, with ongoing investigations delving into its effectiveness, safety and optimal implementation. Early-stage clinical trials and observational studies have provided insights into the potential of FMT to modulate the dysbiotic gut microbiota associated with IBD, aiming to mitigate inflammation and promote mucosal healing. However, considerable complexities persist, including variations in donor selection, treatment protocols and outcome assessments. Challenges in standardizing FMT protocols for IBD treatment are compounded by the dynamic nature of the gut microbiome and the heterogeneity of IBD itself. Despite these challenges, enthusiasm for FMT in IBD emanates from its capacity to address gut microbial dysbiosis, signifying a paradigm shift towards more comprehensive approaches in IBD management. As ongoing research progresses, an enhanced understanding of FMT's role in IBD therapy is anticipated. This article synthesizes the current status of FMT in IBD, elucidating the attendant challenges and aspiring towards the refinement of its application for improved patient outcomes.


Assuntos
Infecções por Clostridium , Doenças Inflamatórias Intestinais , Humanos , Transplante de Microbiota Fecal/métodos , Doenças Inflamatórias Intestinais/terapia , Doenças Inflamatórias Intestinais/complicações , Infecções por Clostridium/terapia , Infecções por Clostridium/complicações , Estudos Longitudinais , Inflamação/complicações , Disbiose/terapia , Resultado do Tratamento
12.
Front Plant Sci ; 15: 1364807, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501138

RESUMO

Introduction: Microbial biofertilizers or biocontrol agents are potential sustainable approaches to overcome the limitations of conventional agricultural practice. However, the limited catalog of microbial candidates for diversified crops creates hurdles in successfully implementing sustainable agriculture for increasing global/local populations. The present study aimed to explore the wheat rhizosphere microbiota for microbial strains with a biofertilizer and biocontrol potential. Methods: Using a microbial culturing-based approach, 12 unique microbial isolates were identified and screened for biofertilizer/biocontrol potential using genomics and physiological experimentations. Results and discussion: Molecular, physiological, and phylogenetic characterization identified Stenotrophomonas maltophilia BCM as a potential microbial candidate for sustainable agriculture. Stenotrophomonas maltophilia BCM was identified as a coccus-shaped gram-negative microbe having optimal growth at 37°C in a partially alkaline environment (pH 8.0) with a proliferation time of ~67 minutes. The stress response physiology of Stenotrophomonas maltophilia BCM indicates its successful survival in dynamic environmental conditions. It significantly increased (P <0.05) the wheat seed germination percentage in the presence of phytopathogens and saline conditions. Genomic characterization decoded the presence of genes involved in plant growth promotion, nutrient assimilation, and antimicrobial activity. Experimental evidence also correlates with genomic insights to explain the potential of Stenotrophomonas maltophilia BCM as a potential biofertilizer and biocontrol agent. With these properties, Stenotrophomonas maltophilia BCM could sustainably promote wheat production to ensure food security for the increasing population, especially in native wheat-consuming areas.

13.
Front Med (Lausanne) ; 10: 1294699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288302

RESUMO

Introduction: Recombination serves as a common strategy employed by RNA viruses for their genetic evolution. Extensive genomic surveillance during the COVID-19 pandemic has reported SARS-CoV-2 Recombinant strains indicating recombination events during the viral evolution. This study introspects the phenomenon of genome recombination by tracing the footprint of prominent lineages of SARS-CoV-2 at different time points in the context of on-going evolution and emergence of Recombinants. Method: Whole genome sequencing was carried out for 2,516 SARS-CoV-2 (discovery cohort) and 1,126 (validation cohort) using nasopharyngeal samples collected between the time period of March 2020 to August 2022, as part of the genomic surveillance program. The sequences were classified according to the different lineages of SARS-CoV-2 prevailing in India at respective time points. Results: Mutational diversity and abundance evaluation across the 12 lineages identified 58 Recombinant sequences as harboring the least number of mutations (n = 111), with 14 low-frequency unique mutations with major chunk of mutations coming from the BA.2. The spontaneously/dynamically increasing and decreasing trends of mutations highlight the loss of mutations in the Recombinants that were associated with the SARS-CoV-2 replication efficiency, infectivity, and disease severity, rendering them functionally with low infectivity and pathogenicity. Linkage disequilibrium (LD) analysis revealed that mutations comprising the LD blocks of BA.1, BA.2, and Recombinants were found as minor alleles or as low-frequency alleles in the LD blocks from the previous SARS-CoV-2 variant samples, especially Pre-VOC. Moreover, a dissipation in the size of LD blocks as well as LD decay along with a high negative regression coefficient (R squared) value was demonstrated in the Omicron and BA.1 and BA.2 lineages, which corroborated with the breakpoint analysis. Conclusion: Together, the findings help to understand the evolution and emergence of Recombinants after the Omicron lineages, for sustenance and adaptability, to maintain the epidemic spread of SARS-CoV-2 in the host population already high in immunity levels.

14.
Gastroenterol Rep (Oxf) ; 10: goab046, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35382166

RESUMO

Human gut-microbiome explorations have enriched our understanding of microbial colonization, maturation, and dysbiosis in health-and-disease subsets. The enormous metabolic potential of gut microbes and their role in the maintenance of human health is emerging, with new avenues to use them as therapeutic agents to overcome human disorders. Microbiome therapeutics are aimed at engineering the gut microbiome using additive, subtractive, or modulatory therapy with an application of native or engineered microbes, antibiotics, bacteriophages, and bacteriocins. This approach could overcome the limitation of conventional therapeutics by providing personalized, harmonized, reliable, and sustainable treatment. Its huge economic potential has been shown in the global therapeutics market. Despite the therapeutic and economical potential, microbiome therapeutics is still in the developing stage and is facing various technical and administrative issues that require research attention. This review aims to address the current knowledge and landscape of microbiome therapeutics, provides an overview of existing health-and-disease applications, and discusses the potential future directions of microbiome modulations.

15.
Brief Funct Genomics ; 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36281758

RESUMO

A delicate balance of nutrients, antigens, metabolites and xenobiotics in body fluids, primarily managed by diet and host metabolism, governs human health. Human gut microbiota is a gatekeeper to nutrient bioavailability, pathogens exposure and xenobiotic metabolism. Human gut microbiota starts establishing during birth and evolves into a resilient structure by adolescence. It supplements the host's metabolic machinery and assists in many physiological processes to ensure health. Biotic and abiotic stressors could induce dysbiosis in gut microbiota composition leading to disease manifestations. Despite tremendous scientific advancements, a clear understanding of the involvement of gut microbiota dysbiosis during disease onset and clinical outcomes is still awaited. This would be important for developing an effective and sustainable therapeutic intervention. This review synthesizes the present scientific knowledge to present a comprehensive picture of the role of gut microbiota in the onset and severity of a disease.

16.
Front Cell Infect Microbiol ; 12: 1082674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36710963

RESUMO

Cellulomonas sp. HM71, a human gut microbe possesses metabolic machinery to catabolize antigenic gluten, hence, holds promises as microbial therapy to treat gluten-derived celiac disease. However, its efficacy, safety, and survivability in the gastrointestinal ecosystem await functional elucidation. The current study is designed to characterize Cellulomonas sp. HM71 for its physiological, genomic, and probiotic properties. The morphological and physiological assessment indicates it as a coccus-shaped gram-positive bacterium growing optimally at 30°C in a neutral environment (pH 7.0). Cellulomonas sp. HM71 showed continuous growth even in stressful environments (salinity up to 3% NaCl and 6% KCl), variable temperature (25°C to 35°C) and pH (5-9), antibiotics, and gastric and intestinal conditions. The Cellulomonas sp. HM71 genome harbors diversified genetic machinery to modulate humongous metabolic potential for the host. This was substantiated by the hemolytic and CaCo-2 cell line assay which confirms its cellular adherence and biosafety. Notably, genome analysis did not identify any pathogenic islands. Probiotic characterization indicates its potential to overcome waterborne infections and digestion-related disorders. Cumulatively, Cellulomonas sp. HM71 can be considered a probiotic strain for improving human health because of the highlighted functions.


Assuntos
Cellulomonas , Probióticos , Humanos , Cellulomonas/genética , Cellulomonas/química , Análise de Sequência de DNA , Células CACO-2 , Ecossistema , Glutens , RNA Ribossômico 16S/genética
17.
Front Microbiol ; 13: 932795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910631

RESUMO

Systemic characterization of the human gut microbiota highlighted its vast therapeutic potential. Despite having enormous potential, the non-availability of their culture representatives created a bottleneck to understand the concept of microbiome-based therapeutics. The present study is aimed to isolate and evaluate the probiotic potential of a human gut isolate. Physiochemical, morphological, and phylogenetic characterization of a human gut isolate identifies it as a rod-shaped gram-negative microbe taxonomically affiliated with the Cytobacillus genus, having an optimal growth at 37°C in a partially alkaline environment (pH 8.0). This human gut isolate showed continuous growth in the presence of salts (up to 7% NaCl and 10% KCl), antibiotics, metals and metalloids [silver nitrate (up to 2 mM); lead acetate (up to 2 mM); sodium arsenate (up to 10 mM); potassium dichromate (up to 2 mM)], gastric and intestinal conditions, diverse temperature (25-50°C), and pH (5-9) conditions making it fit to survive in the highly variable gut environment. Genomic characterization identified the presence of gene clusters for diverse bio-catalytic activity, stress response, and antimicrobial activity, as well as it indicated the absence of pathogenic gene islands. A combination of functional features like anti-amylase, anti-lipase, glutenase, prolyl endopeptidase, lactase, bile salt hydrolase, cholesterol oxidase, and anti-pathogenic activity is indicative of its probiotic potential in various disorders. This was further substantiated by the CaCo-2 cell line assay confirming its cellular adherence and biosafety. Conclusively, human gut isolate possessed significant probiotic potential that can be used to promote animal and human health.

18.
Microbiol Res ; 262: 127099, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35779308

RESUMO

BACKGROUND: Emergence of SARS-CoV-2 VOCs at different time points through COVID-19 pandemic raised concern for increased transmissibility, infectivity and vaccination breakthroughs. METHODS: 1567 international travellers plus community transmission COVID-19 cases were analysed for mutational profile of VOCS, that led to notable waves in India, namely Alpha, Delta, and Omicron. Spike mutations in Linkage Disequilibrium were investigated for potential impact on structural and functional changes of Spike-ACE2. RESULTS: ORF1ab and spike harboured diverse mutational signatures for each lineage. B.1.617.2 and AY. * demonstrated comparable profile, yet non-clade defining mutations were majorly unique between international vs community samples. Contrarily, Omicron lineages showed substantial overlap in non-clade defining mutations, signifying early phase of transmission and evolution within Indian community. Mutations in LD for Alpha [N501Y, A570D, D1118H, S982A], Delta [P681R, L452R, EFR:156-158 G, D950N, G142D] and Omicron [P681H, D796Y, N764K, N969K, N501Y, S375F] resulted in decreased binding affinity of Spike-ACE2 for Alpha and BA.1 whereas Delta, Omicron and BA.2 demonstrated strong binding. CONCLUSION: Genomic surveillance tracked spread of VOCs in international travellers' vs community transmission. Behavioural transmission patterns of variants, based on selective advantage incurred by spike mutations, led us to predict sudden takeover of Delta over Alpha and BA.2 over BA.1 in India.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Mutação , Pandemias , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
19.
J Bacteriol ; 193(20): 5873-4, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21742876

RESUMO

Rheinheimera sp. strain A13L, which has antimicrobial activity, was isolated from alkaline brackish water of the high-altitude Pangong Lake of Ladakh, India. Here we report the draft genome sequence of Rhienheimera sp. strain A13L (4,523,491 bp with a G+C content of 46.23%). The genome is predicted to contain genes for marinocine and colicin V production, which may be responsible for the antimicrobial activity of the strain.


Assuntos
Chromatiaceae/genética , Chromatiaceae/isolamento & purificação , Água Doce/microbiologia , Genoma Bacteriano , Sequência de Bases , Água Doce/análise , Índia , Dados de Sequência Molecular
20.
Protein Expr Purif ; 79(1): 49-59, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21515382

RESUMO

A putative epoxide hydrolase-encoding gene was identified from the genome sequence of Cupriavidus metallidurans CH34. The gene was cloned and overexpressed in Escherichia coli with His(6)-tag at its N-terminus. The epoxide hydrolase (CMEH) was purified to near homogeneity and was found to be a homodimer, with subunit molecular weight of 36 kDa. The CMEH had broad substrate specificity as it could hydrolyze 13 epoxides, out of 15 substrates tested. CMEH had high specific activity with 1,2-epoxyoctane, 1,2-epoxyhexane, styrene oxide (SO) and was also found to be active with meso-epoxides. The enzyme had optimum pH and temperature of 7.5 and 37°C respectively, with racemic SO. Biotransformation of 80 mM SO with recombinant whole E. coli cells expressing CMEH led to 56% ee(P) of (R)-diol with 77.23% conversion in 30 min. The enzyme could hydrolyze (R)-SO, ∼2-fold faster than (S)-SO, though it accepted both (R)- and (S)-SO with similar affinity as K(m)(R) and K(m)(S) of CMEH were 2.05±0.42 and 2.11±0.16 mM, respectively. However, the k(cat)(R) and k(cat)(S) for the two enantiomers of SO were 4.80 and 3.34 s(-1), respectively. The wide substrate spectrum exhibited by CMEH combined with the fast conversion rate makes it a robust biocatalyst for industrial use. Regioselectivity studies with enantiopure (R)- and (S)-SO revealed that with slightly altered regioselectivity, CMEH has a high potential to synthesize an enantiopure (R)-PED, through an enantioconvergent hydrolytic process.


Assuntos
Cupriavidus/enzimologia , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Cupriavidus/genética , Epóxido Hidrolases/isolamento & purificação , Compostos de Epóxi/metabolismo , Escherichia coli/genética , Expressão Gênica , Dados de Sequência Molecular , Octanos/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa