Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nat Immunol ; 24(9): 1552-1564, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524800

RESUMO

The nuclear factor kappa B (NF-κB) family of transcription factors orchestrates signal-induced gene expression in diverse cell types. Cellular responses to NF-κB activation are regulated at the level of cell and signal specificity, as well as differential use of family members (subunit specificity). Here we used time-dependent multi-omics to investigate the selective functions of Rel and RelA, two closely related NF-κB proteins, in primary B lymphocytes activated via the B cell receptor. Despite large numbers of shared binding sites genome wide, Rel and RelA directed kinetically distinct cascades of gene expression in activated B cells. Single-cell RNA sequencing revealed marked heterogeneity of Rel- and RelA-specific responses, and sequential binding of these factors was not a major mechanism of protracted transcription. Moreover, nuclear co-expression of Rel and RelA led to functional antagonism between the factors. By rigorously identifying the target genes of each NF-κB subunit, these studies provide insights into exclusive functions of Rel and RelA in immunity and cancer.


Assuntos
NF-kappa B , Fator de Transcrição RelA , NF-kappa B/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Linfócitos B/metabolismo , Sítios de Ligação , Receptores de Antígenos/metabolismo
2.
Clin Exp Allergy ; 53(11): 1147-1161, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37641429

RESUMO

Suppressor of cytokine signalling (SOCS) proteins bind to certain cytokine receptors, Janus kinases and signalling molecules to regulate signalling pathways, thus controlling immune and inflammatory responses. Dysregulated expression of various types of SOCS molecules was indicated in multiple types of allergic diseases. SOCS1, SOCS2, SOCS3, SOCS5, and cytokine-inducible SH2 domain protein (CISH) can differentially exert anti-allergic impacts through different mechanisms, such as suppressing Th2 cell development and activation, reducing eosinophilia, decreasing IgE production, repressing production of pro-allergic chemokines, promoting Treg cell differentiation and activation, suppressing Th17 cell differentiation and activation, increasing anti-allergic Th1 responses, inhibiting M2 macrophage polarization, modulating survival and development of mast cells, reducing pro-allergic activity of keratinocytes, and suppressing pulmonary fibrosis. Although some anti-allergic effects were attributed to SOCS3, it can perform pro-allergic impacts through several pathways, such as promoting Th2 cell development and activation, supporting eosinophilia, boosting pro-allergic activity of eosinophils, increasing IgE production, enhancing the expression of the pro-allergic chemokine receptor, reducing Treg cell differentiation, increasing pro-allergic Th9 responses, as well as supporting mucus secretion and collagen deposition. In this review, we discuss the contrasting roles of SOCS proteins in contexts of allergic disorders to provide new insights regarding the pathophysiology of these diseases and possibly explore SOCS proteins as potential therapeutic targets for alleviating allergies.


Assuntos
Antialérgicos , Eosinofilia , Hipersensibilidade , Humanos , Hipersensibilidade/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Citocinas/metabolismo , Imunoglobulina E/metabolismo
3.
Immunology ; 166(4): 429-443, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35470422

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has created unprecedented challenges worldwide. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 and has a complex interaction with the immune system, including growing evidence of sex-specific differences in the immune response. Sex-disaggregated analyses of epidemiological data indicate that males experience more severe symptoms and suffer higher mortality from COVID-19 than females. Many behavioural risk factors and biological factors may contribute to the different immune response. This review examines the immune response to SARS-CoV-2 infection in the context of sex, with emphasis on potential biological mechanisms explaining differences in clinical outcomes. Understanding sex differences in the pathophysiology of SARS-CoV-2 infection will help promote the development of specific strategies to manage the disease.


Assuntos
COVID-19 , Feminino , Humanos , Imunidade , Masculino , Pandemias , Fatores de Risco , SARS-CoV-2 , Fatores Sexuais
4.
Cell Mol Biol (Noisy-le-grand) ; 68(11): 90-96, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37114302

RESUMO

PKP1 has been crucially involved in enhancing the MYC translation leading to lung carcinogenesis via evading numerous tumour-suppressing checkpoint systems. Plakophilin 1(PKP1) is the part of armadillo and plakophilin gene families and it is a necessary component of desmosomes. Several researches reported PKP1 protein as one of the most overexpressed proteins in human lung cancer. Therefore, we have designed our research towards elucidating better plant-based compounds as drug candidates for the management of lung cancer with minimal adverse effects over other chemotherapeutic drugs such as afatinib. This study comprises forty-six flavonoids for targeting PKP1 using in silico approaches that were not used earlier as an anti-cancerous agent targeting PKP1 in lung cancer treatment. Flavonoids are plant-derived natural compounds that exhibited enormous anti-cancerous potential against several human cancers. NPACT database was used to screen potent flavonoids that have not been used to target the PKP1 protein in lung cancer. Patch Dock and CB Dock were employed to elucidate the PKP1 (1XM9) inhibitory potential of selected flavonoids. Analysis with both the docking tools has revealed that calyxins I  showed maximum affinity in comparison to the standard drug, afatinib. Further PASS and BAS analyses were performed using SWISS ADME and molinspiration to investigate the pharmacokinetic profiling of potent flavonoids having significant binding energy. Visualization of complexes was done by using UCSF chimera. However, further detailed in vitro studies are needed to validate the candidature of calyxinsI for being developed as an anticancer drug for the management of lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Afatinib , Neoplasias Pulmonares/tratamento farmacológico , Proteínas/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Placofilinas/genética , Placofilinas/metabolismo
5.
Am J Respir Cell Mol Biol ; 64(4): 492-503, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33513310

RESUMO

Pleural organization may occur after empyema or complicated parapneumonic effusion and can result in restrictive lung disease with pleural fibrosis (PF). Pleural mesothelial cells (PMCs) may contribute to PF through acquisition of a profibrotic phenotype, mesothelial-mesenchymal transition (MesoMT), which is characterized by increased expression of α-SMA (α-smooth muscle actin) and other myofibroblast markers. Although MesoMT has been implicated in the pathogenesis of PF, the role of the reactive oxygen species and the NOX (nicotinamide adenine dinucleotide phosphate oxidase) family in pleural remodeling remains unclear. Here, we show that NOX1 expression is enhanced in nonspecific human pleuritis and is induced in PMCs by THB (thrombin). 4-Hydroxy-2-nonenal, an indicator of reactive oxygen species damage, was likewise increased in our mouse model of pleural injury. NOX1 downregulation blocked THB- and Xa (factor Xa)-mediated MesoMT, as did pharmacologic inhibition of NOX1 with ML-171. NOX1 inhibition also reduced phosphorylation of Akt, p65, and tyrosine 216-GSK-3ß, signaling molecules previously shown to be implicated in MesoMT. Conversely, ML-171 did not reverse established MesoMT. NOX4 downregulation attenuated TGF-ß- and THB-mediated MesoMT. However, NOX1 downregulation did not affect NOX4 expression. NOX1- and NOX4-deficient mice were also protected in our mouse model of Streptococcus pneumoniae-mediated PF. These data show that NOX1 and NOX4 are critical determinants of MesoMT.


Assuntos
Transição Epitelial-Mesenquimal , NADPH Oxidase 1/metabolismo , Pleura/enzimologia , Pleurisia/enzimologia , Pneumonia Pneumocócica/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Streptococcus pneumoniae/patogenicidade , Animais , Células Cultivadas , Modelos Animais de Doenças , Fator Xa/metabolismo , Fibrose , Interações Hospedeiro-Patógeno , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 1/deficiência , NADPH Oxidase 1/genética , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Pleura/microbiologia , Pleura/patologia , Pleurisia/microbiologia , Pleurisia/patologia , Pleurisia/fisiopatologia , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia , Transdução de Sinais , Trombina/metabolismo
6.
Immunology ; 164(1): 173-189, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33964011

RESUMO

Multiple pathogen-associated molecular patterns (PAMPs) on a pathogen's surface imply their simultaneous recognition by the host cell membrane-located multiple PAMP-specific Toll-like receptors (TLRs). The TLRs on endosomes recognize internalized pathogen-derived nucleic acids and trigger anti-pathogen immune responses aimed at eliminating the intracellular pathogen. Whether the TLRs influence each other's expression and effector responses-termed TLR interdependency-remains unknown. Herein, we first probed the existence of TLR interdependencies and next determined how targeting TLR interdependencies might determine the outcome of Leishmania infection. We observed that TLRs selectively altered expression of their own and of other TLRs revealing novel TLR interdependencies. Leishmania major-an intra-macrophage parasite inflicting the disease cutaneous leishmaniasis in 88 countries-altered this TLR interdependency unfolding a unique immune evasion mechanism. We targeted this TLR interdependency by selective silencing of rationally chosen TLRs and by stimulation with selective TLR ligands working out a novel phase-specific treatment regimen. Targeting the TLR interdependency elicited a host-protective anti-leishmanial immune response and reduced parasite burden. To test whether this observation could be used as a scientific rationale for treating a potentially fatal L. donovani infection, which causes visceral leishmaniasis, we targeted the inter-TLR dependency adopting the same treatment regimen. We observed reduced splenic Leishman-Donovan units accompanied by host-protective immune response in susceptible BALB/c mice. The TLR interdependency optimizes TLR-induced immune response by a novel immunoregulatory framework and scientifically rationalizes targeting TLRs in tandem and in sequence for redirecting immune responses against an intracellular pathogen.


Assuntos
Leishmania major/fisiologia , Leishmaniose Cutânea/imunologia , Macrófagos/imunologia , Receptores Toll-Like/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Inativação Gênica , Interações Hospedeiro-Parasita , Humanos , Imunomodulação , Leishmaniose Cutânea/terapia , Camundongos , Camundongos Endogâmicos BALB C , Moléculas com Motivos Associados a Patógenos/imunologia , RNA Interferente Pequeno/genética , Receptor Cross-Talk , Transdução de Sinais , Receptores Toll-Like/genética
7.
Cytokine ; 145: 155458, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33581983

RESUMO

Cytokines are pleiotropic polypeptides that control the development of and responses mediated by immune cells. Cytokine classification predominantly relies on [1] the target receptor(s), [2] the primary structural features of the extracellular domains of their receptors, and [3] their receptor composition. Functionally, cytokines are either pro-inflammatory or anti-inflammatory, hematopoietic colony-stimulating factors, developmental and would healing maintaining immune homeostasis. When the balance in C can form complex networks amongst themselves that may affect the homeostasis and diseases. Cytokines can affect resistance and susceptibility for many diseases and their availability in the host cytokine production and interaction is disturbed, immunopathogenesis sets in. Therefore, cytokine-targeting bispecific, and chimeric antibodies form a significant mode of immnuo-therapeutics Although the field has grown deep and wide, many areas of cytokine biology remain unknown. Here, we have reviewed these cytokines along with the organization, signaling, and functions through respective cytokine-receptor-families. Being part of the special issue on the Role of Cytokines in Leishmaniasis, this review is intended to be used as an organized primer on cytokines and not a resource for detailed discussion- for which a two-volume Handbook of cytokines is available- on each of the cytokines. Priming the readers on cytokines, we next brief the role of cytokines in Leishmaniasis. In the brief, we do not provide an account of each of the involved cytokines known to date, instead, we offer a temporal relationship between the cytokines and the progress of the infection towards the alternate outcomes- healing or non-healing- of the infection.


Assuntos
Citocinas/imunologia , Leishmaniose/imunologia , Animais , Homeostase/imunologia , Humanos , Inflamação/imunologia , Leishmaniose/parasitologia , Receptores de Citocinas/imunologia , Transdução de Sinais/imunologia
8.
Scand J Immunol ; 93(2): e12959, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32797730

RESUMO

Allergic airway disorders such as asthma and allergic rhinitis are mainly caused by inhaled allergen-induced improper activation and responses of immune and non-immune cells. One important response is the production of IL-27 by macrophages and dendritic cells (DCs) during the early stage of airway allergies. IL-27 exerts powerful modulatory influences on the cells of innate immunity [eg neutrophils, eosinophils, mast cells, monocytes, macrophages, dendritic cells (DCs), innate lymphoid cells (ILCs), natural killer (NK) cells and NKT cells)] and adaptive immunity (eg Th1, Th2, Th9, Th17, regulatory T, CD8+ cytotoxic T and B cells). The IL-27-mediated signalling pathways may be modulated to attenuate asthma and allergic rhinitis. In this review, a comprehensive discussion concerning the roles carried out by IL-27 in asthma and allergic rhinitis was provided, while evidences are presented favouring the use of IL-27 in the treatment of airway allergies.


Assuntos
Fatores Imunológicos/imunologia , Interleucina-27/imunologia , Sistema Respiratório/imunologia , Rinite Alérgica/imunologia , Animais , Asma/imunologia , Células Dendríticas/imunologia , Humanos
9.
Phys Rev Lett ; 124(3): 037203, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-32031844

RESUMO

NiNb_{2}O_{6} is an almost ideal realization of a 1D spin-1 ferromagnetic Heisenberg chain compound with weak unidirectional anisotropy. Using time-domain THz spectroscopy, we measure the low-energy electrodynamic response of NiNb_{2}O_{6} as a function of temperature and external magnetic field. At low temperatures, we find a magnonlike spin excitation, which corresponds to the lowest energy excitation at q∼0. At higher temperatures, we unexpectedly observe a temperature-dependent renormalization of the spin-excitation energy, which has a strong dependence on field direction. Using theoretical arguments, exact diagonalizations, and finite temperature dynamical Lanczos calculations, we construct a picture of magnon-magnon interactions that naturally explains the observed renormalization. We show how magnetic field strength and direction may be used to directly tune the sign of the magnon-magnon interaction. This unique scenario is a consequence of the spin-1 nature and has no analog in the more widely studied spin-1/2 systems.

10.
IUBMB Life ; 71(11): 1685-1700, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31329370

RESUMO

Toll-like receptors (TLRs) are a subset of pattern recognition receptors (PRR) in innate immunity and act as a connecting link between innate and adaptive immune systems. During Leishmania infection, the activation of TLRs influences the pathogen-specific immune responses, which may play a decisive role in determining the outcome of infection, toward elimination or survival of the pathogen. Antigen-presenting cells (APCs) of the innate immune system such as macrophages, dendritic cells (DCs), neutrophils, natural killer (NK) cells, and NKT cells express TLR2, which plays a crucial role in the parasite recognition and elicitation of immune responses in Leishmania infection. Depending on the infecting Leishmania species, the TLR2 pathways may result in a host-protective or a disease-exacerbating response. While Leishmania major and Leishmania donovani infections trigger TLR2-related host-protective and non-protective immune responses, Leishmania mexicana and Leishmania infantum infections are reported to elicit TLR2-mediated host-protective responses and Leishmania amazonensis and Leishmania braziliensis infections are reported to evoke a disease-exacerbating response. These findings illustrate that TLR2-related effector functions are diverse and may be exerted in a species- or strain-dependent manner. TLR2 agonists or antagonists may have therapeutic potentials to trigger the desired immune response during leishmaniasis. In this review, we discuss the TLR2-related immune responses during leishmaniasis and highlight the novel insights into the possible role of TLR2-driven resistance or susceptibility to Leishmania.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Interações Hospedeiro-Parasita/imunologia , Imunidade Inata/imunologia , Leishmania/imunologia , Leishmaniose/imunologia , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/imunologia , Animais , Antiparasitários/farmacologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/parasitologia , Humanos , Leishmaniose/parasitologia , Macrófagos/imunologia , Macrófagos/parasitologia
11.
Phys Rev Lett ; 122(1): 017002, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012661

RESUMO

Epitaxial bilayer films of Bi(110) and Ni host a time-reversal symmetry breaking superconducting order with an unexpectedly high transition temperature T_{c}=4.1 K. Using time-domain THz spectroscopy, we measure the low energy electrodynamic response of a Bi/Ni bilayer thin film from 0.2 to 2 THz as a function of temperature and magnetic field. We analyze the data in the context of a Bardeen-Cooper-Schrieffer-like superconductor with a finite normal-state scattering rate. In a zero magnetic field, all states in the film become fully gapped, providing important constraints into possible pairing symmetries. Our data appear to rule out the odd-frequency pairing that is natural for many ferromagnetic-superconductor interfaces. By analyzing the magnetic field-dependent response in terms of a pair-breaking parameter, we determine that superconductivity develops over the entire bilayer sample which may point to the p-wave like nature of unconventional superconductivity.

12.
Exp Brain Res ; 237(12): 3419-3430, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31734788

RESUMO

Plasminogen activator inhibitor 1 (PAI-1), which is elevated in numerous disease states, has been implicated as a stress-related protein involved in the pathogenesis of depression. We measured PAI-1 in the plasma of healthy and depressed individuals and assessed plasminogen activator (PA) expression and regulation by PAI-1 in cultured normal human astrocytes (NHA). Elevated plasma PAI-1 levels were found in depressed patients. Brain tissues from depressed individuals also showed stronger expression of hippocampal PAI-1 by confocal imaging in comparison to healthy individuals. Using a lipopolysaccharide-induced inflammatory model of depression in mice, we measured PAI-1 in murine plasma and brain, by ELISA and immunohistochemistry, respectively. Similar elevations were seen in plasma but not in brain homogenates of mice exposed to LPS. We further correlated the findings with depressive behavior. Ex vivo experiments with NHA treated with proinflammatory cytokines implicated in the pathogenesis of depression showed increased PAI-1 expression. Furthermore, these studies suggest that urokinase-type plasminogen activator may serve as an astrocyte PA reservoir, able to promote cleavage of brain-derived neurotrophic factor (BDNF) during stress or inflammation. In summary, our findings confirm that derangements of PAI-1 variably occur in the brain in association with the depressive phenotype. These derangements may impede the availability of active, mature (m)BDNF and thereby promote a depressive phenotype.


Assuntos
Astrócitos/metabolismo , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Depressão/metabolismo , Depressão/fisiopatologia , Transtorno Depressivo Maior/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Serpina E2/metabolismo , Animais , Células Cultivadas , Depressão/sangue , Transtorno Depressivo Maior/sangue , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Inibidor 1 de Ativador de Plasminogênio/sangue , Serpina E2/sangue
13.
Int J Mol Sci ; 20(13)2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31277491

RESUMO

During the last 100 years, cell signaling has evolved into a common mechanism for most physiological processes across systems. Although the majority of cell signaling principles were initially derived from hormonal studies, its exponential growth has been supported by interdisciplinary inputs, e.g., from physics, chemistry, mathematics, statistics, and computational fields. As a result, cell signaling has grown out of scope for any general review. Here, we review how the messages are transferred from the first messenger (the ligand) to the receptor, and then decoded with the help of cascades of second messengers (kinases, phosphatases, GTPases, ions, and small molecules such as cAMP, cGMP, diacylglycerol, etc.). The message is thus relayed from the membrane to the nucleus where gene expression ns, subsequent translations, and protein targeting to the cell membrane and other organelles are triggered. Although there are limited numbers of intracellular messengers, the specificity of the response profiles to the ligands is generated by the involvement of a combination of selected intracellular signaling intermediates. Other crucial parameters in cell signaling are its directionality and distribution of signaling strengths in different pathways that may crosstalk to adjust the amplitude and quality of the final effector output. Finally, we have reflected upon its possible developments during the coming years.


Assuntos
Células/metabolismo , Transdução de Sinais , Animais , Humanos , Modelos Biológicos , Processamento de Proteína Pós-Traducional , Pesquisa Translacional Biomédica
14.
Cytokine ; 112: 1-11, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30472107

RESUMO

Immunometabolic framework provides a way to understand the immune regulation via cell intrinsic metabolic fluxes and metabolites during infections, tumors, and inflammatory disorders. During these diseases, the immune cells are activated requiring more energy and moderating their metabolic functions. The two categories of metabolic alterations are therefore causally associated with energy derivation and cellular functions. Pathogens, tumors and inflammation target energy metabolism, primarily glucose uptake, glucose catabolism, gluconeogenesis for continuing lipid metabolism through mainstream pathways such as glycolysis, tricarboxylic acid cycle, mitochondrial respiration and pentose phosphate pathway. Many biosynthetic pathways such as those of cholesterol, ceramide, sphingolipids, and fatty acids are altered explaining the metabolic interface in molecular pathogenesis in various infectious and non-infectious inflammatory diseases. The emerging immune-metabolic framework also identifies the key regulatory elements such as metabolites, signalling intermediates and transcription factors. These regulatory elements play key roles in deciding the fate of an infection, tumor or autoimmune diseases. The original research articles and the review articles in this Special issue of Cytokine on "Infection, Inflammation and Immunometabolomes" highlight these aspects of metabolic reprogramming and the role of some 'metabolomic regulators' in controlling the outcome of infectious and non-infectious diseases. In this Editorial, we introduce the readers to these articles discussing the elements in immune-metabolic framework.


Assuntos
Infecções/metabolismo , Inflamação/metabolismo , Vias Biossintéticas/fisiologia , Humanos , Neoplasias/metabolismo
15.
Cytokine ; 104: 114-123, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29032985

RESUMO

Random mutations leading to loss of cell cycle control is not a rare occurrence in an organism but the mutated cells are recognized and eliminated preventing the development of a tumor. These potentially tumorigenic cells release damage-associated molecular patterns (DAMPs), which are recognized by toll-like receptors (TLRs) on macrophages and dendritic cells. The initial TLR-DAMP interactions lead to different responses such as altered antigen presentation and cytokine release that directly affect T cell activation and removal of the tumorigenic cells. The indirect effects of TLR-DAMP interaction include chemokine-directed altered T cell trafficking, angiogenesis for both T cell infiltration and tumor cell metastasis, and alteration of intra-tumoral milieu contributing to the development of tumor cells heterogeneity. Thus, the initial TLR-DAMP interaction has a set of local effects that modulate tumor cell growth and heterogeneity and a disseminating set of central effects that dynamically affect T cell trafficking and functions. Herein, we argue that the DAMP-TLR-cytokine axis in the tumor microenvironment serves as the mainstay that orchestrates and regulates the pro- and anti-tumor elements which dynamically interact between themselves eventuating in tumor regression or growth. The knowledge of this TLR-based immuno-surveillance framework is a key to developing a novel immunotherapy against cancer.


Assuntos
Citocinas/metabolismo , Neoplasias/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Animais , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Microambiente Tumoral
16.
Cytokine ; 104: 110-113, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29017773

RESUMO

Toll-like receptors (TLRs) recognize the pathogen-associated molecular patterns (PAMPs) and induce host-protective immune response. The role of the profilin-recognizing TLR11/TLR12 in Leishmania infection is unknown. Herein, we report that TLR11/ TLR12 expression increases in virulent L. major-infected macrophages but is prevented by miltefosine, an anti-leishmanial drug. While lipohosphoglycan (LPG) increases, LPG or TLR2 blockade prevents, the heightened TLR11/TLR12 expression. LPG-TLR2 interaction triggers MyD88- and TIRAP-mediated signaling enhancing ERK-1/2 activation and increased production of IL-10 that promotes TLR11/TLR12 expression. Profilin expression was higher in the virulent L. major and L. donovani parasites than that observed in the avirulent parasites. TLR11 or TLR12 silencing reduces parasite burden and increases IFN-γ, but reduces IL-4, production indicating that TLR11 and TLR12 play a pro-leishmanial role.


Assuntos
Inativação Gênica , Leishmania major/fisiologia , Leishmaniose/metabolismo , Receptores Toll-Like/metabolismo , Animais , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Células Th1/metabolismo
17.
J Org Chem ; 80(8): 3880-90, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25803565

RESUMO

The 3+1 condensation of symmetrical 16-Selena/telluratripyrranes with symmetrical selenophene-2,5-diols/tellurophene-2,5-diols in the presence of BF3-etheratre or BF3-methanol followed by oxidation with DDQ gave 5,10-porphodimethenes, whereas the process with unsymmetrical selenophene-2,5-diols/tellurophene-2,5-diols gave 5-porphomethenes. In addition, the reaction of unsymmetrical 16-Selena/telluratripyrranes with symmetrical selenophene-2,5-diols/tellurophene-2,5-diols gave the corresponding porphotrimethenes, whereas the process with unsymmetrical selenophene-2,5-diols/tellurophene-2,5-diols gave the 5,15-porphodimethenes. The structures of different products were characterized by IR, (1)H and (13)C NMR, (1)H-(1)H COSY, CHN analysis, and mass spectrometry. The binding of mercury with the calix[4]phyrins mentioned above had been observed in the decreasing order of porphodimethenes > porphomethenes > porphotrimethenes by UV-vis and (1)H NMR spectroscopy.


Assuntos
Álcoois/química , Calixarenos/química , Etano/química , Metano/química , Selênio/química , Telúrio/química , Etano/análogos & derivados , Espectroscopia de Ressonância Magnética , Metano/análogos & derivados , Estrutura Molecular , Oxirredução
18.
J Psychoactive Drugs ; 47(4): 331-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26317285

RESUMO

The validity of self-reported tobacco use is often questioned given the potential for underestimation of use. This study used data from a double-blind, placebo-controlled clinical trial of varenicline for smokeless tobacco dependence in India to evaluate the accuracy of self-reported smokeless tobacco cessation using biochemical validation procedures and to evaluate correlates of reporting inaccuracy. Smokeless tobacco users attending a dental clinic at AIIMS were randomized to placebo or varenicline; all participants received counseling. Detailed smokeless tobacco use was recorded and abstinence was defined as cotinine-verified 7-day point prevalence cessation (cotinine < 50 ng/ml) and breath CO > 10 ppm at the end of 12 weeks of treatment. One-half of study completers (82/165) self-reported abstinence. Biochemical verification confirmed that (65.9%) subjects provided accurate self-reports while (34.1%) participants underreported tobacco use. These data indicate poor agreement between self-reported and biochemically confirmed abstinence (κ = -0.191). Underreporters of tobacco use had significantly higher baseline cotinine (p < 0.05), total craving (p < 0.012), and negative reinforcement craving (p < 0.001) vs. those whose self-reports were correctly verified. These findings provide evidence to support the need for biochemical validation of self-reported abstinence outcomes among smokeless tobacco users in cessation programs in India and identify high levels of pretreatment cotinine and craving levels as potential correlates of false reporting.


Assuntos
Cotinina/urina , Agonistas Nicotínicos/uso terapêutico , Autorrelato , Abandono do Uso de Tabaco/métodos , Vareniclina/uso terapêutico , Adulto , Testes Respiratórios , Monóxido de Carbono/análise , Método Duplo-Cego , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Índia , Masculino , Tabagismo/tratamento farmacológico
19.
Artigo em Inglês | MEDLINE | ID: mdl-38561624

RESUMO

Lung cancer remains a formidable challenge in oncology, necessitating the develop-ment of more effective prognostic and diagnostic techniques due to inefficient conventional therapeutic approaches and inadequate methods for early lung cancer diagnosis. Despite im-mense progress in the development of innovative strategies to alleviate the impact of this devas-tating disease, the outcomes, unfortunately, remain unsatisfactory, particularly in targeted drug delivery methods. Consequently, nanotechnology has emerged as a revolutionary force in cancer research to develop more effective targeted drug delivery tools due to its extraordinary capacity at the atomic and molecular levels. It has appeared as a beacon of hope in this area of unmet need, providing innovative ways for the prognosis and diagnosis of lung carcinoma. Therefore, this comprehensive review delves into the evolving field of nano-based therapeutics, shedding light on their potential to transform lung cancer treatment. This study meticulously explores the most promising nano-based strategies that have been extensively linked with the treatment of lung carcinoma and mainly emphasizes targeted drug delivery methods and therapies. Addition-ally, this review encapsulates the favorable results of clinical trials, which support the potential pathways for further development of nanotherapeutics in lung cancer management.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38831573

RESUMO

Lung cancer and tuberculosis (TB) are classified as the second-most life-threatening diseases globally. They both are exclusively represented as major public health risks and might exhibit similar symptoms, occasionally diagnosed simultaneously. Several epidemiological studies suggest that TB is a significant risk factor for the progression of lung cancer. The staggering mortality rates of pulmonary disorders are intrinsically connected to lung cancer and TB. Numerous factors play a pivotal role in the development of TB and may promote lung carcinogenesis, particularly among the geriatric population. Understanding the intricacies involved in the association between lung carcinogenesis and TB has become a crucial demand of current research. Consequently, this study aims to comprehensively review current knowledge on the relationship between tuberculosis-related inflammation and the emergence of lung carcinoma, highlighting the impact of persistent inflammation on lung tissue, immune modulation, fibrosis, aspects of reactive oxygen species, and an altered microenvironment that are linked to the progression of tuberculosis and subsequently trigger lung carcinoma.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa