Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 241: 117522, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967707

RESUMO

Cancer patients face a significant clinical and socio-economic burden due to increased incidence, mortality, and poor survival. Factors like late diagnosis, recurrence, drug resistance, severe side effects, and poor bioavailability limit the scope of current therapies. There is a need for novel, cost-effective, and safe diagnostic methods, therapeutics to overcome recurrence and drug resistance, and drug delivery vehicles with enhanced bioavailability and less off-site toxicity. Advanced nanomaterial-based research is aiding cancer biologists by providing solutions for issues like hypoxia, tumor microenvironment, low stability, poor penetration, target non-specificity, and rapid drug clearance. Currently, nanozymes and carbon-dots are attractive due to their low cost, high catalytic activity, biocompatibility, and lower toxicity. Nanozymes and carbon-dots are increasingly used in imaging, biosensing, diagnosis, and targeted cancer therapy. Integrating these materials with advanced diagnostic tools like CT scans and MRIs can aid in clinical decision-making and enhance the effectiveness of chemotherapy, photothermal, photodynamic, and sonodynamic therapies, with minimal invasion and reduced collateral effects.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Carbono , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Microambiente Tumoral
2.
Int J Obes (Lond) ; 47(12): 1179-1199, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37696926

RESUMO

Diabetes is a serious health issue that causes a progressive dysregulation of carbohydrate metabolism due to insufficient insulin hormone, leading to consistently high blood glucose levels. According to the epidemiological data, the prevalence of diabetes has been increasing globally, affecting millions of individuals. It is a long-term condition that increases the risk of various diseases caused by damage to small and large blood vessels. There are two main subtypes of diabetes: type 1 and type 2, with type 2 being the most prevalent. Genetic and molecular studies have identified several genetic variants and metabolic pathways that contribute to the development and progression of diabetes. Current treatments include gene therapy, stem cell therapy, statin therapy, and other drugs. Moreover, recent advancements in therapeutics have also focused on developing novel drugs targeting these pathways, including incretin mimetics, SGLT2 inhibitors, and GLP-1 receptor agonists, which have shown promising results in improving glycemic control and reducing the risk of complications. However, these treatments are often expensive, inaccessible to patients in underdeveloped countries, and can have severe side effects. Peptides, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are being explored as a potential therapy for diabetes. These peptides are postprandial glucose-dependent pancreatic beta-cell insulin secretagogues and have received much attention as a possible treatment option. Despite these advances, diabetes remains a major health challenge, and further research is needed to develop effective treatments and prevent its complications. This review covers various aspects of diabetes, including epidemiology, genetic and molecular basis, and recent advancements in therapeutics including herbal and synthetic peptides.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Incretinas/uso terapêutico , Incretinas/metabolismo , Polipeptídeo Inibidor Gástrico , Insulina/metabolismo , Peptídeos/uso terapêutico , Glucose/metabolismo , Glicemia/metabolismo
3.
Molecules ; 28(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36677853

RESUMO

The novel pathogenic virus was discovered in Wuhan, China (December 2019), and quickly spread throughout the world. Further analysis revealed that the pathogenic strain of virus was corona but it was distinct from other coronavirus strains, and thus it was renamed 2019-nCoV or SARS-CoV-2. This coronavirus shares many characteristics with other coronaviruses, including SARS-CoV and MERS-CoV. The clinical manifestations raised in the form of a cytokine storm trigger a complicated spectrum of pathophysiological changes that include cardiovascular, kidney, and liver problems. The lack of an effective treatment strategy has imposed a health and socio-economic burden. Even though the mortality rate of patients with this disease is lower, since it is judged to be the most contagious, it is considered more lethal. Globally, the researchers are continuously engaged to develop and identify possible preventive and therapeutic regimens for the management of disease. Notably, to combat SARS-CoV-2, various vaccine types have been developed and are currently being tested in clinical trials; these have also been used as a health emergency during a pandemic. Despite this, many old antiviral and other drugs (such as chloroquine/hydroxychloroquine, corticosteroids, and so on) are still used in various countries as emergency medicine. Plant-based products have been reported to be safe as alternative options for several infectious and non-infectious diseases, as many of them showed chemopreventive and chemotherapeutic effects in the case of tuberculosis, cancer, malaria, diabetes, cardiac problems, and others. Therefore, plant-derived products may play crucial roles in improving health for a variety of ailments by providing a variety of effective cures. Due to current therapeutic repurposing efforts against this newly discovered virus, we attempted to outline many plant-based compounds in this review to aid in the fight against SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Atenção
4.
Br J Clin Pharmacol ; 88(8): 3610-3626, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35373382

RESUMO

Beta-thalassaemia, including sickle cell anaemia and thalassaemia E, is most common in developing countries in tropical and subtropic regions. Because carriers have migrated there owing to demographic migration, ß-thalassaemia can now be detected in areas other than malaria-endemic areas. Every year, an estimated 300 000-500 000 infants, the vast majority of whom are from developing countries, are born with a severe haemoglobin anomaly. Currently, some basic techniques, which include iron chelation therapy, hydroxyurea, blood transfusion, splenectomy and haematopoietic stem cell transplantation, are being used to manage thalassaemia patients. Despite being the backbone of treatment, traditional techniques have several drawbacks and limitations. Ineffective erythropoiesis, correction of globin chain imbalance and adjustment of iron metabolism are some of the innovative treatment methods that have been developed in the care of thalassaemia patients in recent years. Moreover, regulating the expression of B-cell lymphoma/leukaemia 11A and sex-determining region Y-box through the enhanced expression of micro RNAs can also be considered putative targets for managing haemoglobinopathies. This review focuses on the biological basis of ß-globin gene production, the pathophysiology of ß-thalassaemia and the treatment options that have recently been introduced.


Assuntos
Talassemia , Talassemia beta , Transfusão de Sangue , Humanos , Lactente , Ferro , Quelantes de Ferro/uso terapêutico , Talassemia/terapia , Talassemia beta/genética , Talassemia beta/terapia
5.
Neurochem Int ; 178: 105798, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950626

RESUMO

Parkinson's disease (PD) is a devastating neurodegenerative disorder predominantly affecting the elderly, characterized by the loss of dopaminergic neurons in the substantia nigra. Reactive oxygen species (ROS) generation plays a central role in the pathogenesis of PD and other neurodegenerative diseases. An imbalance between cellular antioxidant activity and ROS production leads to oxidative stress, contributing to disease progression. Dopamine metabolism, mitochondrial dysfunction, and neuroinflammation in dopaminergic neurons have been implicated in the pathogenesis of Parkinson's disease. Consequently, there is a pressing need for therapeutic interventions capable of scavenging ROS. Current pharmacological approaches, such as L-dihydroxyphenylalanine (levodopa or L-DOPA) and other drugs, provide symptomatic relief but are limited by severe side effects. Researchers worldwide have been exploring alternative compounds with less toxicity to address the multifaceted challenges associated with Parkinson's disease. In recent years, plant-derived polyphenolic compounds have gained significant attention as potential therapeutic agents. These compounds exhibit neuroprotective effects by targeting pathophysiological responses, including oxidative stress and neuroinflammation, in Parkinson's disease. The objective of this review is to summarize the current understanding of the neuroprotective effects of various polyphenols in Parkinson's disease, focusing on their antioxidant and anti-inflammatory properties, and to discuss their potential as therapeutic candidates. This review highlights the progress made in elucidating the molecular mechanisms of action of these polyphenols, identifying potential therapeutic targets, and optimizing their delivery and bioavailability. Well-designed clinical trials are necessary to establish the efficacy and safety of polyphenol-based interventions in the management of Parkinson's disease.

6.
Antioxidants (Basel) ; 12(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36978988

RESUMO

Sickle cell disease (SCD) is a monogenic inheritable disease characterized by severe anemia, increased hemolysis, and recurrent, painful vaso-occlusive crises due to the polymerization of hemoglobin S (HbS)-generated oxidative stress. Up until now, only four drugs are approved for SCD in the US. However, each of these drugs affects only a limited array of SCD pathologies. Importantly, curative therapies, such as gene therapy, or hematopoietic stem cell transplantation are not available for every patient because of their high costs, availability of donor matching, and their serious adverse effects. Therefore, there is an unmet medical need for novel therapeutic strategies that target broader SCD sequelae. SCD phenotypic severity can be alleviated by increasing fetal hemoglobin (HbF) expression. This results in the inhibition of HbS polymerization and thus sickling, and a reduction in oxidative stress. The efficacy of HbF is due to its ability to dilute HbS levels below the threshold required for polymerization and to influence HbS polymer stability in RBCs. Nuclear factor-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein-1 (Keap1)-complex signaling is one of the most important cytoprotective signaling controlling oxidative stress. Nrf2 is present in most organs and, after dissociation from Keap1, it accumulates in the cytoplasm, then translocates to the nucleus where it binds to the antioxidant response element (ARE) sequences and increases the expression of various cytoprotective antioxidant genes. Keeping this in mind, various researchers have proposed a role of multiple agents, more importantly tert-Butylhydroquinone (tBHQ), curcumin, etc., (having electrophilic properties) in inhibiting keap1 activity, so that Nrf2 can translocate to the nucleus to activate the gamma globin gene, thus maintaining alpha-hemoglobin-stabilizing protein (AHSP) and HbF levels. This leads to reduced oxidative stress, consequently minimizing SCD-associated complications. In this review, we will discuss the role of the Keap-1-Nrf2 complex in hemoglobinopathies, especially in SCD, and how this complex might represent a better target for more effective treatment options.

7.
Genes Genomics ; 45(6): 813-825, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36807878

RESUMO

BACKGROUND: Genome-wide runs of homozygosity (ROH) are appropriate to estimate genomic inbreeding, determine population history, unravel the genetic architecture of complex traits and disorders. OBJECTIVE: The study sought to investigate and compare the actual proportion of homozygosity or autozygosity in the genomes of progeny of four subtypes of first cousin mating in humans, using both pedigree and genomic measures for autosomes and sex chromosomes. METHODS: For this purpose, Illumina Global Screening Array-24 v1.0 BeadChip followed by cyto-ROH analysis through Illumina Genome Studio was used to characterise the homozygosity in five participants from North Indian state (Uttar Pradesh). PLINK v.1.9 software was used to estimate the genomic inbreeding coefficients viz. ROH-based inbreeding estimate (FROH) and homozygous loci-based inbreeding estimate (FHOM). RESULTS: A total of 133 ROH segments were detected with maximum number and genomic coverage in Matrilateral Parallel (MP) type and minimum in outbred individual. ROH pattern revealed that MP type has a higher degree of homozygosity than other subtypes. The comparison of FROH, FHOM, and pedigree-based inbreeding estimate (FPED) showed some difference in theoretical and realised proportion of homozygosity for sex-chromosomal loci but not for autosome for each type of consanguinity. CONCLUSIONS: This is the very first study to compare and estimate the pattern of homozygosity among the kindreds of first cousin unions. However, a greater number of individuals from each type of marriage is required for statistical inference of no difference between theoretical and realized homozygosity among different degrees of inbreeding prevalent in humans worldwide.


Assuntos
Endogamia , Casamento , Humanos , Polimorfismo de Nucleotídeo Único/genética , Homozigoto , Genoma
8.
Front Neurol ; 13: 1035885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36742047

RESUMO

Background: Brain-derived neurotrophic factor (BDNF), a neurotransmitter modulator, plays a significant role in neuronal survival and growth and participates in neuronal plasticity, thus being essential for learning, memory, and the development of cognition. Additionally, it is crucial for appetite, weight, and metabolic control and plays a pivotal role in the cardiovascular system. The Val66Met polymorphism (rs6265) of the BDNF gene causes a decrease in BDNF secretion and plays a role in impairments in cognition, energy homeostasis, and cardiovascular events. The present study aimed to evaluate the association of polymorphism (rs6265) of the BDNF gene with three quantitative traits simultaneously, namely, intelligence quotient (IQ), body mass index (BMI), and blood pressure (BP). Methods: Psychometric, morphometric, and physiometric data of the total participants (N = 246) were collected. WASI-IIINDIA was used to measure cognitive ability. Genotyping was carried out using allele-specific PCR for the rs6265 polymorphism (C196T), and genotypes were determined. Statistical analyses were performed at p < 0.05 significance level using MS-Excel and SigmaPlot. The odds ratio models with a 95% confidence interval were used to test the associations. The used models are co-dominant, recessive, dominant, over-dominant, and additive. Results: The allelic frequencies of alleles C and T were 72 and 28%, respectively. Under the dominant genetic model, a significant susceptible association of minor allele T was observed with a lower average verbal comprehensive index (OR = 2.216, p = 0.003, CI (95%) =1.33-3.69), a lower average performance reasoning index (OR = 2.634, p < 0.001, CI (95%) = 1.573-4.41), and a lower average full-scale IQ-4 (OR = 3.159, p < 0.001, CI (95%) = 1.873-5.328). Carriers of Met-alleles were found to have an increased body mass index (OR = 2.538, p < 0.001, CI (95%) = 1.507-4.275), decreased systolic blood pressure (OR = 2.051, p = 0.012, CI (95%) = 1.202-3.502), and decreased diastolic blood pressure (OR = 2.162, p = 0.006, CI (95%) = 1.278-3.657). Under the recessive genetic model, several folds decrease in IQ and BP and an increase in BMI with the presence of the T allele was also detected. Conclusion: This novel study may improve our understanding of genetic alterations to the traits and hence be helpful for clinicians and researchers to investigate the diagnostic and prognostic value of this neurotrophic factor.

9.
J Med Case Rep ; 16(1): 362, 2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36209112

RESUMO

BACKGROUND: Due to indels in the ß-globin gene, patients with ß-thalassemia major exhibit a range of severity, with genotype ß0ß0 > ß0ß+ > ß+ß+, according to the production level of the ß-globin chain. More than 300 mutations have been identified in the ß-globin gene. CASE PRESENTATION: In this case study, we report a compound heterozygous condition with a rare concoction of four different variants (CD 3(T > C), CD41/42 (-CTTT), IVS II-16 (G > C), and IVS II-666 (C > T) in a single ß-globin gene. A regular transfusion-dependent 4-year-old male patient from India was included in the study. Augmented direct sequencing of the ß-globin gene helped reveal the presence of an unusual combination of different variants in a single gene. This patient clinically presented as ß-thalassemia major and was genotypically considered as ß0ß+, although CD41/42(-CTTT) was the only causative/pathogenic mutation in the disease severity. CONCLUSION: Although CD41/42-(CTTT) is the only pathogenic variant among the four variants, the clinical complications of such a combination of variants (pathogenic and benign) is not well understood. Intronic mutations may have the ability to modify clinical characteristics. The variants must therefore be reclassified using additional mRNA splicing and expression-based studies. Additionally, these types of combinations may have significance in studying population migration around the world.


Assuntos
Globinas beta , Talassemia beta , Pré-Escolar , Genótipo , Humanos , Masculino , Mutação , RNA Mensageiro , Globinas beta/genética , Talassemia beta/genética
10.
Appl Clin Genet ; 14: 77-85, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33688235

RESUMO

PURPOSE: Beta thalassemia is one of the most common inherited disorders in India with heterogenous clinical phenotypes from silent carrier to clinically severe ones. Our study aimed to characterize the mutation spectrum in thalassemia patients who are coming to the hospital for follow-up from the western region of Uttar Pradesh India. PATIENTS AND METHODS: For the study, a case series of the retrospective bi-centre study was conducted. The patients from two thalassemia centers in the major hospitals (LLRMC Meerut, and JNMC, Aligarh administered by the Ministry of Health and Family Welfare (MoHFW)) in the Western Uttar Pradesh, India were considered for the study. A total of 77 blood samples were obtained from individuals (both related and unrelated) diagnosed with ß-thalassemia after their consent. After DNA extraction, HBB gene amplification, mutation-specific polymerase chain reaction and gene sequencing were carried out to analyze the mutations. RESULTS: In this study, seven different types of mutations were reported for the first time in Western Uttar Pradesh, India. A novel frameshift mutation, deletion of 4 nucleotides Codon 66/67 (-AAAG) in exon 2 region, is reported for the first time. IVS 1-5 (G>C) and Codon 41/42 (-CTTT) are the most frequently reported mutations. The molecular spectrum for these two cases consists of 44 and 42 alleles out of 108 alleles, respectively. CONCLUSION: A total of 108 ß-thalassemia alleles were studied from 46 homozygous and 31 compound heterozygous patients. All the individuals were from 20 districts of the Western Uttar Pradesh, India.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa