RESUMO
Manual segmentation is an essential tool in the researcher's technical arsenal. It is a frequent practice necessary for image analysis in many protocols, especially in neuroimaging and comparative brain anatomy. In the framework of emergence of studies focusing on alternative animal models, manual segmentation procedures play a critical role. Nevertheless, this critical task is often assigned to students, a process that, unfortunately, tends to be time-consuming and repetitive. Well-conducted and well-described segmentation procedures can potentially guide novice and even expert operators and enhance research works' internal and external validity, making it possible to harmonize studies and facilitate data sharing. Furthermore, recent advances in neuroimaging, such as ex vivo imaging or ultra-high-field MRI, enable new acquisition modalities and the identification of minute structures that are barely visible with typical approaches. In this context of increasingly detailed and multimodal brain studies, reflecting on methodology is relevant and necessary. Because it is crucial to implement good practices in manual segmentation per se but also in the description of the segmentation procedures in research papers, we propose a general roadmap for optimizing the technique, its process and the reporting of manual segmentation. For each of them, the relevant elements of the literature have been collected and cited. The article is accompanied by a checklist that the reader can use to verify that the critical steps are being followed.
RESUMO
Mapping the chimpanzee brain connectome and comparing it to that of humans is key to our understanding of similarities and differences in primate evolution that occurred after the split from their common ancestor around 6 million years ago. In contrast to studies on macaque species' brains, fewer studies have specifically addressed the structural connectivity of the chimpanzee brain and its comparison with the human brain. Most comparative studies in the literature focus on the anatomy of the cortex and deep nuclei to evaluate how their morphology and asymmetry differ from that of the human brain, and some studies have emerged concerning the study of brain connectivity among humans, monkeys, and apes. In this work, we established a new white matter atlas of the deep and superficial white matter structural connectivity in chimpanzees. In vivo anatomical and diffusion-weighted magnetic resonance imaging (MRI) data were collected on a 3-Tesla MRI system from 39 chimpanzees. These datasets were subsequently processed using a novel fiber clustering pipeline adapted to the chimpanzee brain, enabling us to create two novel deep and superficial white matter connectivity atlases representative of the chimpanzee brain. These atlases provide the scientific community with an important and novel set of reference data for understanding the commonalities and differences in structural connectivity between the human and chimpanzee brains. We believe this study to be innovative both in its novel approach and in mapping the superficial white matter bundles in the chimpanzee brain, which will contribute to a better understanding of hominin brain evolution.
Assuntos
Conectoma , Substância Branca , Humanos , Animais , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologia , Pan troglodytes , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Imageamento por Ressonância Magnética , Mapeamento Encefálico , MacacaRESUMO
Diffusion MRI tractography (dMRI) has fundamentally transformed our ability to investigate white matter pathways in the human brain. While long-range connections have extensively been studied, superficial white matter bundles (SWMBs) have remained a relatively underexplored aspect of brain connectivity. This study undertakes a comprehensive examination of SWMB connectivity in both the human and chimpanzee brains, employing a novel combination of empirical and geometric methodologies to classify SWMB morphology in an objective manner. Leveraging two anatomical atlases, the Ginkgo Chauvel chimpanzee atlas and the Ginkgo Chauvel human atlas, comprising respectively 844 and 1375 superficial bundles, this research focuses on sparse representations of the morphology of SWMBs to explore the little-understood superficial connectivity of the chimpanzee brain and facilitate a deeper understanding of the variability in shape of these bundles. While similar, already well-known in human U-shape fibers were observed in both species, other shapes with more complex geometry such as 6 and J shapes were encountered. The localisation of the different bundle morphologies, putatively reflecting the brain gyrification process, was different between humans and chimpanzees using an isomap-based shape analysis approach. Ultimately, the analysis aims to uncover both commonalities and disparities in SWMBs between chimpanzees and humans, shedding light on the evolution and organization of these crucial neural structures.
Assuntos
Encéfalo , Pan troglodytes , Substância Branca , Pan troglodytes/anatomia & histologia , Animais , Humanos , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão , Vias Neurais/anatomia & histologia , Masculino , Especificidade da Espécie , Feminino , Processamento de Imagem Assistida por Computador , ConectomaRESUMO
Whether habit stimulation is effective in DOC patient arousal has not been reported. In this paper, we analyzed the responses of DOC patients to habit stimulation. Nineteen DOC patients with alcohol consumption or smoking habits were recruited and 64-channel EEG signals were acquired both at the resting state and at three stimulation states. Wavelet transformation and nonlinear dynamics were used to extract the features of EEG signals and four brain lobes were selected to investigate the degree of EEG response to habit stimulation. Results showed that the highest degree of EEG response was from the call-name stimulation, followed by habit and music stimulations. Significant differences in EEG wavelet energy and response coefficient were found both between habit and music stimulation, and between habit and call-name stimulation. These findings prove that habit stimulation induces relatively more intense EEG responses in DOC patients than music stimulation, suggesting that it may be a relevant additional method for eliciting patient arousal.