RESUMO
Fatty acid synthase (FASN) is the rate-limiting enzyme for the de novo synthesis of fatty acids in the cytoplasm of tumour cells. Many tumour cells express high levels of FASN, and its expression is associated with a poorer prognosis. Cervical cancer is a major public health problem, representing the fourth most common cancer affecting women worldwide. To date, only a few in silico studies have correlated FASN expression with cervical cancer. This study aimed to investigate in vitro FASN expression in premalignant lesions and cervical cancer samples and the effects of a FASN inhibitor on cervical cancer cells. FASN expression was observed in all cervical cancer samples with increased expression at more advanced cervical cancer stages. The FASN inhibitor (orlistat) reduced the in vitro cell viability of cervical cancer cells (C-33A, ME-180, HeLa and SiHa) in a time-dependent manner and triggered apoptosis. FASN inhibitor also led to cell cycle arrest and autophagy. FASN may be a potential therapeutic target for cervical cancer, and medicinal chemists, pharmaceutical researchers and formulators should consider this finding in the development of new treatment approaches for this cancer type.
Assuntos
Neoplasias do Colo do Útero , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintases/farmacologia , Feminino , Humanos , Orlistate/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológicoRESUMO
The human papillomavirus (HPV) infection, which is strongly related to cervical cancer, can be reduced by the topical application of imiquimod. Some strategies have been used to increase the adhesion and penetration of drugs through the vaginal mucosa. Two of them are the development of mucoadhesive semisolid formulations and the development of polymeric nanocarriers. In this paper, we hypothesize that the combined use of these two strategies results in a better performance of the formulation to retain imiquimod into the vaginal tissue. Aiming this, two different systems are proposed: (a) chitosan-coated poly(ε-caprolactone)-nanocapsules incorporated into hydroxyethylcellulose gel (HEC-NCimiq-chit), and (b) poly(ε-caprolactone)-nanocapsules incorporated into chitosan hydrogel (CHIT-NCimiq). These formulations were submitted to three main tests: mucoadhesivity by interaction, permeation and washability test (or retention test). We developed an integrative index that allows comparing the global performance of the proposed formulations by considering jointly the results of these three tests. Thus, when considered the integrative indexes for the formulations, our results show that CHIT-NCimiq presents the best performance for the treatment of HPV.
Assuntos
Aminoquinolinas/administração & dosagem , Aminoquinolinas/farmacocinética , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Quitosana/química , Nanocápsulas/química , Vagina/metabolismo , Administração Intravaginal , Animais , Linhagem Celular Tumoral , Celulose/análogos & derivados , Portadores de Fármacos , Composição de Medicamentos , Feminino , Géis , Humanos , Imiquimode , Veículos Farmacêuticos , Poliésteres , Suínos , Adesivos TeciduaisRESUMO
Treatment of bacterial airway infections is essential for cystic fibrosis therapy. However, effectiveness of antibacterial treatment is limited as bacteria inside the mucus are protected from antibiotics and immune response. To overcome this biological barrier, ciprofloxacin was loaded into lipid-core nanocapsules (LNC) for high mucus permeability, sustained release and antibacterial activity. Ciprofloxacin-loaded LNC with a mean size of 180nm showed a by 50% increased drug permeation through mucus. In bacterial growth assays, the drug in the LNC had similar minimum inhibitory concentrations as the free drug in P. aeruginosa and S. aureus. Interestingly, formation of biofilm-like aggregates, which were observed for S. aureus treated with free ciprofloxacin, was avoided by exposure to LNC. With the combined advantages over the non-encapsulated drug, ciprofloxacin-loaded LNC represent a promising drug delivery system with the prospect of an improved antibiotic therapy in cystic fibrosis.