Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Cell ; 75(2): 206-208, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31348878

RESUMO

Discoveries by Klompe et al. (2019) and Strecker et al. (2019) elucidate distinct CRISPR-Cas mechanisms for site-specific programmable transposition in prokaryotic organisms.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA , RNA , Transposases
2.
Proc Natl Acad Sci U S A ; 117(23): 12674-12685, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32430322

RESUMO

Robust cytotoxic T cell infiltration has proven to be difficult to achieve in solid tumors. We set out to develop a flexible protocol to efficiently transfect tumor and stromal cells to produce immune-activating cytokines, and thus enhance T cell infiltration while debulking tumor mass. By combining ultrasound with tumor-targeted microbubbles, membrane pores are created and facilitate a controllable and local transfection. Here, we applied a substantially lower transmission frequency (250 kHz) than applied previously. The resulting microbubble oscillation was significantly enhanced, reaching an effective expansion ratio of 35 for a peak negative pressure of 500 kPa in vitro. Combining low-frequency ultrasound with tumor-targeted microbubbles and a DNA plasmid construct, 20% of tumor cells remained viable, and ∼20% of these remaining cells were transfected with a reporter gene both in vitro and in vivo. The majority of cells transfected in vivo were mucin 1+/CD45- tumor cells. Tumor and stromal cells were then transfected with plasmid DNA encoding IFN-ß, producing 150 pg/106 cells in vitro, a 150-fold increase compared to no-ultrasound or no-plasmid controls and a 50-fold increase compared to treatment with targeted microbubbles and ultrasound (without IFN-ß). This enhancement in secretion exceeds previously reported fourfold to fivefold increases with other in vitro treatments. Combined with intraperitoneal administration of checkpoint inhibition, a single application of IFN-ß plasmid transfection reduced tumor growth in vivo and recruited efficacious immune cells at both the local and distant tumor sites.


Assuntos
Imunoterapia/métodos , Interferon beta/genética , Neoplasias Experimentais/terapia , Linfócitos T/imunologia , Transfecção/métodos , Ondas Ultrassônicas , Animais , Linhagem Celular Tumoral , Membrana Celular/efeitos da radiação , Movimento Celular , Humanos , Interferon beta/metabolismo , Camundongos , Microbolhas/uso terapêutico , Linfócitos T/fisiologia
3.
Dev Dyn ; 249(7): 884-897, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32133710

RESUMO

BACKGROUND: Inactivating mutations in the gene for cartilage-associated protein (CRTAP) cause osteogenesis imperfecta type VII in humans, with a phenotype that can include craniofacial defects. Dental and craniofacial manifestations have not been a focus of case reports to date. We analyzed the craniofacial and dental phenotype of Crtap-/- mice by skull measurements, micro-computed tomography (micro-CT), histology, and immunohistochemistry. RESULTS: Crtap-/- mice exhibited a brachycephalic skull shape with fusion of the nasofrontal suture and facial bones, resulting in mid-face retrusion and a class III dental malocclusion. Loss of CRTAP also resulted in decreased dentin volume and decreased cellular cementum volume, though acellular cementum thickness was increased. Periodontal dysfunction was revealed by decreased alveolar bone volume and mineral density, increased periodontal ligament (PDL) space, ectopic calcification within the PDL, bone-tooth ankylosis, altered immunostaining of extracellular matrix proteins in bone and PDL, increased pSMAD5, and more numerous osteoclasts on alveolar bone surfaces. CONCLUSIONS: Crtap-/- mice serve as a useful model of the dental and craniofacial abnormalities seen in individuals with osteogenesis imperfecta type VII.


Assuntos
Anormalidades Craniofaciais/genética , Proteínas da Matriz Extracelular/genética , Chaperonas Moleculares/genética , Mutação , Osteogênese Imperfeita/genética , Animais , Calcificação Fisiológica , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/metabolismo , Osteoclastos/metabolismo , Osteogênese , Ligamento Periodontal/embriologia , Fenótipo , Crânio/patologia , Microtomografia por Raio-X
4.
J Struct Biol ; 212(1): 107597, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32758526

RESUMO

Teeth are comprised of three unique mineralized tissues, enamel, dentin, and cementum, that are susceptible to developmental defects similar to those affecting bone. X-linked hypophosphatemia (XLH), caused by PHEX mutations, leads to increased fibroblast growth factor 23 (FGF23)-driven hypophosphatemia and local extracellular matrix disturbances. Hypophosphatasia (HPP), caused by ALPL mutations, results in increased levels of inorganic pyrophosphate (PPi), a mineralization inhibitor. Generalized arterial calcification in infancy (GACI), caused by ENPP1 mutations, results in vascular calcification due to decreased PPi, later compounded by FGF23-driven hypophosphatemia. In this perspective, we compare and contrast dental defects in primary teeth associated with XLH, HPP, and GACI, briefly reviewing genetic and biochemical features of these disorders and findings of clinical and preclinical studies to date, including some of our own recent observations. The distinct dental defects associated with the three heritable mineralization disorders reflect unique processes of the respective dental hard tissues, revealing insights into their development and clues about pathological mechanisms underlying such disorders.


Assuntos
Calcificação Fisiológica/fisiologia , Dente/fisiologia , Fosfatase Alcalina/metabolismo , Animais , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Raquitismo Hipofosfatêmico Familiar/metabolismo , Raquitismo Hipofosfatêmico Familiar/fisiopatologia , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Hipofosfatasia/metabolismo , Hipofosfatasia/fisiopatologia , Dente/metabolismo , Calcificação Vascular/metabolismo , Calcificação Vascular/fisiopatologia
5.
Am J Pathol ; 189(2): 370-390, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30660331

RESUMO

Commensal gut microbiota-host immune responses are experimentally delineated via gnotobiotic animal models or alternatively by antibiotic perturbation of gut microbiota. Osteoimmunology investigations in germ-free mice, revealing that gut microbiota immunomodulatory actions critically regulate physiologic skeletal development, highlight that antibiotic perturbation of gut microbiota may dysregulate normal osteoimmunological processes. We investigated the impact of antibiotic disruption of gut microbiota on osteoimmune response effects in postpubertal skeletal development. Sex-matched C57BL/6T mice were administered broad-spectrum antibiotics or vehicle-control from the age of 6 to 12 weeks. Antibiotic alterations in gut bacterial composition and skeletal morphology were sex dependent. Antibiotics did not influence osteoblastogenesis or endochondral bone formation, but notably enhanced osteoclastogenesis. Unchanged Tnf or Ccl3 expression in marrow and elevated tumor necrosis factor-α and chemokine (C-C motif) ligand 3 in serum indicated that the pro-osteoclastic effects of the antibiotics are driven by increased systemic inflammation. Antibiotic-induced broad changes in adaptive and innate immune cells in mesenteric lymph nodes and spleen demonstrated that the perturbation of gut microbiota drives a state of dysbiotic hyperimmune response at secondary lymphoid tissues draining local gut and systemic circulation. Antibiotics up-regulated the myeloid-derived suppressor cells, immature myeloid progenitor cells known for immunosuppressive properties in pathophysiologic inflammatory conditions. Myeloid-derived suppressor cell-mediated immunosuppression can be antigen specific. Therefore, antibiotic-induced broad suppression of major histocompatibility complex class II antigen presentation genes in bone marrow discerns that antibiotic perturbation of gut microbiota dysregulates critical osteoimmune cross talk.


Assuntos
Antibacterianos/efeitos adversos , Microbioma Gastrointestinal , Osteogênese , Maturidade Sexual , Animais , Antibacterianos/farmacologia , Quimiocina CCL3/imunologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Linfonodos/imunologia , Linfonodos/patologia , Masculino , Mesentério/imunologia , Mesentério/patologia , Camundongos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/patologia , Osteoclastos/imunologia , Osteoclastos/patologia , Osteogênese/efeitos dos fármacos , Osteogênese/imunologia , Maturidade Sexual/efeitos dos fármacos , Maturidade Sexual/imunologia , Baço/imunologia , Baço/patologia , Fator de Necrose Tumoral alfa/imunologia
6.
Nat Chem Biol ; 14(1): 29-35, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29131146

RESUMO

Assembly of recombinant multiprotein systems requires multiple culturing and purification steps that scale linearly with the number of constituent proteins. This problem is particularly pronounced in the preparation of the 34 proteins involved in transcription and translation systems, which are fundamental biochemistry tools for reconstitution of cellular pathways ex vivo. Here, we engineer synthetic microbial consortia consisting of between 15 and 34 Escherichia coli strains to assemble the 34 proteins in a single culturing, lysis, and purification procedure. The expression of these proteins is controlled by synthetic genetic modules to produce the proteins at the correct ratios. We show that the pure multiprotein system is functional and reproducible, and has low protein contaminants. We also demonstrate its application in the screening of synthetic promoters and protease inhibitors. Our work establishes a novel strategy for producing pure translation machinery, which may be extended to the production of other multiprotein systems.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Consórcios Microbianos/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Biologia Sintética/métodos , Biossíntese de Proteínas , Proteínas Recombinantes/genética
7.
Bone ; 179: 116961, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37951522

RESUMO

Bone sialoprotein (BSP) is a multifunctional extracellular matrix (ECM) protein present in bone and cementum. Global in vivo ablation of BSP leads to bone mineralization defects, lack of acellular cementum, and periodontal breakdown. BSP harbors three main functional domains: N-terminal collagen-binding domain, hydroxyapatite-nucleating domain, and C-terminal RGD integrin-binding signaling domain. How each of these domains contributes to BSP function(s) is not understood. We hypothesized that collagen-binding and RGD domains play distinct roles in cementoblast functions. Three CRISPR/Cas9 gene-edited cell lines were derived from control wild-type (WT) OCCM.30 murine immortalized cementoblasts: 1) deletion of the N-terminus of BSP after signal peptide, including entire collagen binding domain (Ibsp∆N-Term); 2) deletion of exon 4 (majority of collagen-binding domain; Ibsp∆Ex4); and 3) deletion of C-terminus of BSP including the integrin binding RGD domain (Ibsp∆C-Term). Compared to WT, Ibsp∆Ex4 and Ibsp∆C-Term cell lines showed reduced BSP secretion, in vitro. Abnormal cell morphology was observed in all mutant cell lines, with Ibsp∆C-Term showing highly disorganized cytoskeleton. All mutant cell lines showed significantly lower cell proliferation compared to WT at all timepoints. Ibsp∆N-Term cells showed reduced cell migration by 24 h. All mutants exhibited over 50 % significant reduced mineralization at days 6 and 10. While WT cells were largely unaffected by seeding density, mutant cells failed to mineralize at lower cell density. Mutant cell lines diverged from WT and from each other by dysregulated expression in 23 genes involved in mineralization, ECM, and cell signaling. In summary, disabling BSP functional domains led to profound and distinct changes in cementoblast cell functions, especially dysregulated gene expression and reduced mineralization, in a way did not align with a straightforward narrative where each functional domain caused specific, expected differences. Instead, the study uncovered a significant level of complexity in how different mutant forms of BSP affected cell functions, in vitro.


Assuntos
Cemento Dentário , Proteínas da Matriz Extracelular , Camundongos , Animais , Sialoproteína de Ligação à Integrina/genética , Sialoproteína de Ligação à Integrina/metabolismo , Cemento Dentário/metabolismo , Colágeno , Integrinas , Oligopeptídeos
8.
Medicine (Baltimore) ; 103(13): e37661, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552053

RESUMO

The purpose of this descriptive epidemiological study is to identify billiards-related injuries that presented to the United States emergency departments from 2000 to 2020. This is a study using secondary data from emergency departments from 2000 to 2020 and presented with billiards-related injuries. No applicable intervention, but the main outcome measure was a description of injuries sustained due to participation in billiards. Billiards-related injury was captured by the National Electronic Injury Surveillance System - All Injury Program database. We extracted information on age, gender, injury, and disposition. A collective total of 78,524 (n = 1214) estimated patients, had emergency department visits after incurring billiards-related injuries as a sample. The mean age was 24.9 years. Most injuries occurred in males, 54,915 (n = 851, 69.9%). More injuries appeared to be soft-tissue contusions and abrasions, 19,000 (24.2%, n = 280), followed by lacerations, 17,520 (22.3%, n = 269). The most common cause of injury was being struck by a ball or cue, 39,705 (51.1%, n = 643). While the majority of injured patients were discharged home after evaluation, 2527 (3.2%, n = 45) of them required hospitalization. While a small number of billiards-related injuries presented to the emergency department in comparison to other sports-related injuries, some required more intensive treatment or hospitalization.


Assuntos
Traumatismos em Atletas , Contusões , Lacerações , Masculino , Humanos , Estados Unidos/epidemiologia , Adulto Jovem , Adulto , Traumatismos em Atletas/epidemiologia , Serviço Hospitalar de Emergência , Hospitalização
9.
Nat Rev Nephrol ; 19(1): 9-22, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36280707

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR) renaissance was catalysed by the discovery that RNA-guided prokaryotic CRISPR-associated (Cas) proteins can create targeted double-strand breaks in mammalian genomes. This finding led to the development of CRISPR systems that harness natural DNA repair mechanisms to repair deficient genes more easily and precisely than ever before. CRISPR has been used to knock out harmful mutant genes and to fix errors in coding sequences to rescue disease phenotypes in preclinical studies and in several clinical trials. However, most genetic disorders result from combinations of mutations, deletions and duplications in the coding and non-coding regions of the genome and therefore require sophisticated genome engineering strategies beyond simple gene knockout. To overcome this limitation, the toolbox of natural and engineered CRISPR-Cas systems has been dramatically expanded to include diverse tools that function in human cells for precise genome editing and epigenome engineering. The application of CRISPR technology to edit the non-coding genome, modulate gene regulation, make precise genetic changes and target infectious diseases has the potential to lead to curative therapies for many previously untreatable diseases.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Humanos , Genoma , Reparo do DNA , Mamíferos/genética
10.
Nat Biomed Eng ; 7(5): 661-671, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37127707

RESUMO

The targeted insertion and stable expression of a large genetic payload in primary human cells demands methods that are robust, efficient and easy to implement. Large payload insertion via retroviruses is typically semi-random and hindered by transgene silencing. Leveraging homology-directed repair to place payloads under the control of endogenous essential genes can overcome silencing but often results in low knock-in efficiencies and cytotoxicity. Here we report a method for the knock-in and stable expression of a large payload and for the simultaneous knock-in of two genes at two endogenous loci. The method, which we named CLIP (for 'CRISPR for long-fragment integration via pseudovirus'), leverages an integrase-deficient lentivirus encoding a payload flanked by homology arms and 'cut sites' to insert the payload upstream and in-frame of an endogenous essential gene, followed by the delivery of a CRISPR-associated ribonucleoprotein complex via electroporation. We show that CLIP enables the efficient insertion and stable expression of large payloads and of two difficult-to-express viral antigens in primary T cells at low cytotoxicity. CLIP offers a scalable and efficient method for manufacturing engineered primary cells.


Assuntos
Integrases , Lentivirus , Humanos , Lentivirus/genética , Integrases/genética , Integrases/metabolismo , Técnicas de Introdução de Genes , Transgenes/genética , Reparo de DNA por Recombinação
11.
bioRxiv ; 2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36712002

RESUMO

Designer T cells offer a novel paradigm for treating diseases like cancer, yet they are often hindered by target recognition evasion and limited in vivo control. To overcome these challenges, we develop valency-controlled receptors (VCRs), a novel class of synthetic receptors engineered to enable precise modulation of immune cell activity. VCRs use custom-designed valency-control ligands (VCLs) to modulate T cell signaling via spatial molecular clustering. Using multivalent DNA origami as VCL, we first establish that valency is important for tuning the activity of CD3-mediated immune activation. We then generate multivalent formats of clinically relevant drugs as VCL and incorporate VCR into the architecture of chimeric antigen receptors (CARs). Our data demonstrate that VCL-mediated VCRs can significantly amplify CAR activities and improve suboptimal CARs. Finally, through medicinal chemistry, we synthesize programmable, bioavailable VCL drugs that potentiate targeted immune response against low-antigen tumors both in vitro and in vivo. Our findings establish receptor valency as a core mechanism for enhancing CAR functionality and offer a synthetic chemical biology platform for strengthening customizable, potent, and safer cell therapies.

12.
CRISPR J ; 5(2): 264-275, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35271371

RESUMO

Targeted activation of endogenous genes is an important approach for cell engineering. Here, we report that the nuclease-deactivated dCas9 fused to a transcriptional activator (VPR) and an epigenetic effector (the catalytic domain of histone acetyltransferase p300core) simultaneously, sequentially, or as a single quadripartite effector can lead to enhanced activation of target genes. The composite activator, VPRP, behaves more efficiently than individual activators across a set of genes in different cell types. We characterize off-target effects for host chromatin acetylation and transcriptome using the effectors. Our work demonstrates that transcriptional and epigenetic effectors can be used together to enhance gene activation and suggests the need for further optimization of epigenetic effectors to reduce off-targets.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Epigenômica , Edição de Genes , Regulação da Expressão Gênica/genética
13.
J Bone Miner Res ; 37(10): 2005-2017, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36053890

RESUMO

Hypophosphatasia (HPP) is the inherited error-of-metabolism caused by mutations in ALPL, reducing the function of tissue-nonspecific alkaline phosphatase (TNAP/TNALP/TNSALP). HPP is characterized by defective skeletal and dental mineralization and is categorized into several clinical subtypes based on age of onset and severity of manifestations, though premature tooth loss from acellular cementum defects is common across most HPP subtypes. Genotype-phenotype associations and mechanisms underlying musculoskeletal, dental, and other defects remain poorly characterized. Murine models that have provided significant insights into HPP pathophysiology also carry limitations including monophyodont dentition, lack of osteonal remodeling of cortical bone, and differing patterns of skeletal growth. To address this, we generated the first gene-edited large-animal model of HPP in sheep via CRISPR/Cas9-mediated knock-in of a missense mutation (c.1077C>G; p.I359M) associated with skeletal and dental manifestations in humans. We hypothesized that this HPP sheep model would recapitulate the human dentoalveolar manifestations of HPP. Compared to wild-type (WT), compound heterozygous (cHet) sheep with one null allele and the other with the targeted mutant allele exhibited the most severe alveolar bone, acellular cementum, and dentin hypomineralization defects. Sheep homozygous for the mutant allele (Hom) showed alveolar bone and hypomineralization effects and trends in dentin and cementum, whereas sheep heterozygous (Het) for the mutation did not exhibit significant effects. Important insights gained include existence of early alveolar bone defects that may contribute to tooth loss in HPP, observation of severe mantle dentin hypomineralization in an HPP animal model, association of cementum hypoplasia with genotype, and correlation of dentoalveolar defects with alkaline phosphatase (ALP) levels. The sheep model of HPP faithfully recapitulated dentoalveolar defects reported in individuals with HPP, providing a new translational model for studies into etiopathology and novel therapies of this disorder, as well as proof-of-principle that genetically engineered large sheep models can replicate human dentoalveolar disorders. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Hipofosfatasia , Perda de Dente , Animais , Humanos , Fosfatase Alcalina/genética , Modelos Animais de Doenças , Hipofosfatasia/genética , Hipofosfatasia/patologia , Mutação/genética , Ovinos
14.
Front Dent Med ; 32022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36185572

RESUMO

Mineralization of the skeleton occurs by several physicochemical and biochemical processes and mechanisms that facilitate the deposition of hydroxyapatite (HA) in specific areas of the extracellular matrix (ECM). Two key phosphatases, phosphatase, orphan 1 (PHOSPHO1) and tissue-non-specific alkaline phosphatase (TNAP), play complementary roles in the mineralization process. The actions of PHOSPHO1 on phosphocholine and phosphoethanolamine in matrix vesicles (MVs) produce inorganic phosphate (Pi) for the initiation of HA mineral formation within MVs. TNAP hydrolyzes adenosine triphosphate (ATP) and the mineralization inhibitor, inorganic pyrophosphate (PPi), to generate Pi that is incorporated into MVs. Genetic mutations in the ALPL gene-encoding TNAP lead to hypophosphatasia (HPP), characterized by low circulating TNAP levels (ALP), rickets in children and/or osteomalacia in adults, and a spectrum of dentoalveolar defects, the most prevalent being lack of acellular cementum leading to premature tooth loss. Given that the skeletal manifestations of genetic ablation of the Phospho1 gene in mice resemble many of the manifestations of HPP, we propose that Phospho1 gene mutations may underlie some cases of "pseudo-HPP" where ALP may be normal to subnormal, but ALPL mutation(s) have not been identified. The goal of this perspective article is to compare and contrast the loss-of-function effects of TNAP and PHOSPHO1 on the dentoalveolar complex to predict the likely dental phenotype in humans that may result from PHOSPHO1 mutations. Potential cases of pseudo-HPP associated with PHOSPHO1 mutations may resist diagnosis, and the dental manifestations could be a key criterion for consideration.

15.
JBMR Plus ; 5(3): e10474, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33778330

RESUMO

Micro-computed tomography (µCT) has become essential for analysis of mineralized as well as nonmineralized tissues and is therefore widely applicable in the life sciences. However, lack of standardized approaches and protocols for scanning, analyzing, and reporting data often makes it difficult to understand exactly how analyses were performed, how to interpret results, and if findings can be broadly compared with other models and studies. This problem is compounded in analysis of the dentoalveolar complex by the presence of four distinct mineralized tissues: enamel, dentin, cementum, and alveolar bone. Furthermore, these hard tissues interface with adjacent soft tissues, the dental pulp and periodontal ligament (PDL), making for a complex organ. Drawing on others' and our own experience analyzing rodent dentoalveolar tissues by µCT, we introduce techniques to successfully analyze dentoalveolar tissues with similar or disparate compositions, densities, and morphological characteristics. Our goal is to provide practical guidelines for µCT analysis of rodent dentoalveolar tissues, including approaches to optimize scan parameters (filters, voltage, voxel size, and integration time), reproducibly orient samples, define regions and volumes of interest, segment and subdivide tissues, interpret findings, and report methods and results. We include illustrative examples of analyses performed on genetically engineered mouse models with phenotypes in enamel, dentin, cementum, and alveolar bone. The recommendations are designed to increase transparency and reproducibility, promote best practices, and provide a basic framework to apply µCT analysis to the dentoalveolar complex that can also be extrapolated to a variety of other tissues of the body. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

16.
J Periodontol ; 92(11): 116-127, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34003518

RESUMO

BACKGROUND: Cellular cementum, a mineralized tissue covering apical tooth roots, grows by apposition to maintain the tooth in its occlusal position. We hypothesized that resident cementocytes would show morphological changes in response to cementum apposition, possibly implicating a role in cementum biology. METHODS: Mandibular first molars were induced to super-erupt (EIA) by extraction of maxillary molars, promoting rapid new cementum formation. Tissue and cell responses were analyzed at 6 and/or 21 days post-procedure (dpp). RESULTS: High-resolution micro-computed tomography (micro-CT) and confocal laser scanning microscopy showed increased cellular cementum by 21 dpp. Transmission electron microscopy (TEM) revealed that cementocytes under EIA were 50% larger than control cells, supported by larger pore sizes detected by micro-CT. Cementocytes under EIA displayed ultrastructural changes consistent with increased activity, including increased cytoplasm and nuclear size. We applied EIA to Hyp mutant mice, where cementocytes have perilacunar hypomineralization defects, to test cell and tissue responses in an altered mechanoresponsive milieu. Hyp and WT molars displayed similar super-eruption, with Hyp molars exhibiting 28% increased cellular cementum area versus 22% in WT mice at 21 dpp. Compared to control, Hyp cementocytes featured well-defined, disperse euchromatin and a thick layer of peripherally condensed heterochromatin in nuclei, indicating cellular activity. Immunohistochemistry (IHC) for cementum markers revealed intense dentin matrix protein-1 expression and abnormal osteopontin deposition in Hyp mice. Both WT and Hyp cementocytes expressed gap junction protein, connexin 43. CONCLUSION: This study provides new insights into the EIA model and cementocyte activity in association with new cementum formation.


Assuntos
Cemento Dentário , Dente , Animais , Camundongos , Dente Molar , Raiz Dentária/diagnóstico por imagem , Microtomografia por Raio-X
17.
Sci Rep ; 11(1): 927, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441763

RESUMO

High intensity focused ultrasound (HIFU) rapidly and non-invasively destroys tumor tissue. Here, we sought to assess the immunomodulatory effects of MR-guided HIFU and its combination with the innate immune agonist CpG and checkpoint inhibitor anti-PD-1. Mice with multi-focal breast cancer underwent ablation with a parameter set designed to achieve mechanical disruption with minimal thermal dose or a protocol in which tumor temperature reached 65 °C. Mice received either HIFU alone or were primed with the toll-like receptor 9 agonist CpG and the checkpoint modulator anti-PD-1. Both mechanical HIFU and thermal ablation induced a potent inflammatory response with increased expression of Nlrp3, Jun, Mefv, Il6 and Il1ß and alterations in macrophage polarization compared to control. Furthermore, HIFU upregulated multiple innate immune receptors and immune pathways, including Nod1, Nlrp3, Aim2, Ctsb, Tlr1/2/4/7/8/9, Oas2, and RhoA. The inflammatory response was largely sterile and consistent with wound-healing. Priming with CpG attenuated Il6 and Nlrp3 expression, further upregulated expression of Nod2, Oas2, RhoA, Pycard, Tlr1/2 and Il12, and enhanced T-cell number and activation while polarizing macrophages to an anti-tumor phenotype. The tumor-specific antigen, cytokines and cell debris liberated by HIFU enhance response to innate immune agonists.


Assuntos
Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Animais , Neoplasias da Mama/fisiopatologia , Modelos Animais de Doenças , Humanos , Imunidade , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos , Neoplasias/imunologia , Oligodesoxirribonucleotídeos/farmacologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Pirina/metabolismo , Ultrassonografia/métodos
18.
Bone ; 153: 116139, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34364013

RESUMO

Cementum is a mineralized tissue that covers tooth roots and functions in the periodontal attachment complex. Cementocytes, resident cells of cellular cementum, share many characteristics with osteocytes, are mechanoresponsive cells that direct bone remodeling based on changes in loading. We hypothesized that cementocytes play a key role during orthodontic tooth movement (OTM). To test this hypothesis, we used 8-week-old male Wistar rats in a model of OTM for 2, 7, or 14 days (0.5 N), whereas unloaded contralateral teeth served as controls. Tissue and cell responses were analyzed by high-resolution micro-computed tomography, histology, tartrate-resistant acid phosphatase staining for odontoclasts/osteoclasts, and transmission electron microscopy. In addition, laser capture microdissection was used to collect cellular cementum, and extracted proteins were identified by liquid chromatography coupled to tandem mass spectrometry. The OTM model successfully moved first molars mesially more than 250 µm by 14 days introducing apoptosis in a small number of cementocytes and areas of root resorption on mesial and distal aspects. Cementocytes showed increased nuclear size and proportion of euchromatin suggesting cellular activity. Proteomic analysis identified 168 proteins in cellular cementum with 21 proteins found only in OTM sites and 54 proteins only present in control samples. OTM-down-regulated several extracellular matrix proteins, including decorin, biglycan, asporin, and periostin, localized to cementum and PDL by immunostaining. Furthermore, type IV collagen (COL14A1) was the protein most down-regulated (-45-fold) by OTM and immunolocalized to cells at the cementum-dentin junction. Eleven keratins were significantly increased by OTM, and a pan-keratin antibody indicated keratin localization primarily in epithelial remnants of Hertwig's epithelial root sheath. These experiments provide new insights into biological responses of cementocytes and cellular cementum to OTM.


Assuntos
Proteoma , Técnicas de Movimentação Dentária , Animais , Cemento Dentário , Masculino , Osteoclastos , Proteômica , Ratos , Ratos Wistar , Raiz Dentária , Microtomografia por Raio-X
19.
Cell Rep ; 32(12): 108180, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32966789

RESUMO

Human dendritic cells (DCs) comprise subsets with distinct phenotypic and functional characteristics, but the transcriptional programs that dictate their identity remain elusive. Here, we analyze global chromatin accessibility profiles across resting and stimulated human DC subsets by means of the assay for transposase-accessible chromatin using sequencing (ATAC-seq). We uncover specific regions of chromatin accessibility for each subset and transcriptional regulators of DC function. By comparing plasmacytoid DC responses to IFN-I-producing and non-IFN-I-producing conditions, we identify genetic programs related to their function. Finally, by intersecting chromatin accessibility with genome-wide association studies, we recognize DC subset-specific enrichment of heritability in autoimmune diseases. Our results unravel the basis of human DC subset heterogeneity and provide a framework for their analysis in disease pathogenesis.


Assuntos
Cromatina/metabolismo , Células Dendríticas/metabolismo , Adulto , Ligante de CD40/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Regulação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Proteínas Repressoras/metabolismo , Fatores de Risco , Escleroderma Sistêmico/genética , Transcrição Gênica , Adulto Jovem
20.
Nat Commun ; 11(1): 2102, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32355221

RESUMO

Adeno-associated viruses (AAVs) are typically single-stranded deoxyribonucleic acid (ssDNA) encapsulated within 25-nm protein capsids. Recently, tissue-specific AAV capsids (e.g. PHP.eB) have been shown to enhance brain delivery in rodents via the LY6A receptor on brain endothelial cells. Here, we create a non-invasive positron emission tomography (PET) methodology to track viruses. To provide the sensitivity required to track AAVs injected at picomolar levels, a unique multichelator construct labeled with a positron emitter (Cu-64, t1/2 = 12.7 h) is coupled to the viral capsid. We find that brain accumulation of the PHP.eB capsid 1) exceeds that reported in any previous PET study of brain uptake of targeted therapies and 2) is correlated with optical reporter gene transduction of the brain. The PHP.eB capsid brain endothelial receptor affinity is nearly 20-fold greater than that of AAV9. The results suggest that novel PET imaging techniques can be applied to inform and optimize capsid design.


Assuntos
Encéfalo/diagnóstico por imagem , Dependovirus/isolamento & purificação , Tomografia por Emissão de Pósitrons , Animais , Capsídeo , Quelantes/farmacocinética , Radioisótopos de Cobre/farmacocinética , Feminino , Vetores Genéticos , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa