Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Cell ; 184(20): 5230-5246.e22, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34551315

RESUMO

Although mutations leading to a compromised nuclear envelope cause diseases such as muscular dystrophies or accelerated aging, the consequences of mechanically induced nuclear envelope ruptures are less known. Here, we show that nuclear envelope ruptures induce DNA damage that promotes senescence in non-transformed cells and induces an invasive phenotype in human breast cancer cells. We find that the endoplasmic reticulum (ER)-associated exonuclease TREX1 translocates into the nucleus after nuclear envelope rupture and is required to induce DNA damage. Inside the mammary duct, cellular crowding leads to nuclear envelope ruptures that generate TREX1-dependent DNA damage, thereby driving the progression of in situ carcinoma to the invasive stage. DNA damage and nuclear envelope rupture markers were also enriched at the invasive edge of human tumors. We propose that DNA damage in mechanically challenged nuclei could affect the pathophysiology of crowded tissues by modulating proliferation and extracellular matrix degradation of normal and transformed cells.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Dano ao DNA , Exodesoxirribonucleases/metabolismo , Membrana Nuclear/metabolismo , Fosfoproteínas/metabolismo , Animais , Linhagem Celular , Senescência Celular , Colágeno/metabolismo , Progressão da Doença , Feminino , Humanos , Camundongos , Invasividade Neoplásica , Membrana Nuclear/ultraestrutura , Proteólise , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Annu Rev Cell Dev Biol ; 32: 555-576, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27501444

RESUMO

Metastasis is responsible for most cancer-associated deaths. Accumulating evidence based on 3D migration models has revealed a diversity of invasive migratory schemes reflecting the plasticity of tumor cells to switch between proteolytic and nonproteolytic modes of invasion. Yet, initial stages of localized regional tumor dissemination require proteolytic remodeling of the extracellular matrix to overcome tissue barriers. Recent data indicate that surface-exposed membrane type 1-matrix metalloproteinase (MT1-MMP), belonging to a group of membrane-anchored MMPs, plays a central role in pericellular matrix degradation during basement membrane and interstitial tissue transmigration programs. In addition, a large body of work indicates that MT1-MMP is targeted to specialized actin-rich cell protrusions termed invadopodia, which are responsible for matrix degradation. This review describes the multistep assembly of actin-based invadopodia in molecular details. Mechanisms underlying MT1-MMP traffic to invadopodia through endocytosis/recycling cycles, which are key to the invasive program of carcinoma cells, are discussed.


Assuntos
Metaloproteinase 14 da Matriz/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Animais , Polaridade Celular , Humanos , Modelos Biológicos , Invasividade Neoplásica , Podossomos/metabolismo
3.
Cancer Metastasis Rev ; 42(4): 1155-1167, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37353690

RESUMO

Metastatic progression is regulated by metastasis promoter and suppressor genes. NME1, the prototypic and first described metastasis suppressor gene, encodes a nucleoside diphosphate kinase (NDPK) involved in nucleotide metabolism; two related family members, NME2 and NME4, are also reported as metastasis suppressors. These proteins physically interact with members of the GTPase dynamin family, which have key functions in membrane fission and fusion reactions necessary for endocytosis and mitochondrial dynamics. Evidence supports a model in which NDPKs provide GTP to dynamins to maintain a high local GTP concentration for optimal dynamin function. NME1 and NME2 are cytosolic enzymes that provide GTP to dynamins at the plasma membrane, which drive endocytosis, suggesting that these NMEs are necessary to attenuate signaling by receptors on the cell surface. Disruption of NDPK activity in NME-deficient tumors may thus drive metastasis by prolonging signaling. NME4 is a mitochondrial enzyme that interacts with the dynamin OPA1 at the mitochondria inner membrane to drive inner membrane fusion and maintain a fused mitochondrial network. This function is consistent with the current view that mitochondrial fusion inhibits the metastatic potential of tumor cells whereas mitochondrial fission promotes metastasis progression. The roles of NME family members in dynamin-mediated endocytosis and mitochondrial dynamics and the intimate link between these processes and metastasis provide a new framework to understand the metastasis suppressor functions of NME proteins.


Assuntos
Nucleosídeo NM23 Difosfato Quinases , Neoplasias , Humanos , Nucleosídeo NM23 Difosfato Quinases/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Dinaminas/metabolismo , Neoplasias/patologia , Membrana Celular/metabolismo , Guanosina Trifosfato
4.
Bioinformatics ; 39(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37289551

RESUMO

MOTIVATION: Mathematical models of biological processes altered in cancer are built using the knowledge of complex networks of signaling pathways, detailing the molecular regulations inside different cell types, such as tumor cells, immune and other stromal cells. If these models mainly focus on intracellular information, they often omit a description of the spatial organization among cells and their interactions, and with the tumoral microenvironment. RESULTS: We present here a model of tumor cell invasion simulated with PhysiBoSS, a multiscale framework, which combines agent-based modeling and continuous time Markov processes applied on Boolean network models. With this model, we aim to study the different modes of cell migration and to predict means to block it by considering not only spatial information obtained from the agent-based simulation but also intracellular regulation obtained from the Boolean model.Our multiscale model integrates the impact of gene mutations with the perturbation of the environmental conditions and allows the visualization of the results with 2D and 3D representations. The model successfully reproduces single and collective migration processes and is validated on published experiments on cell invasion. In silico experiments are suggested to search for possible targets that can block the more invasive tumoral phenotypes. AVAILABILITY AND IMPLEMENTATION: https://github.com/sysbio-curie/Invasion_model_PhysiBoSS.


Assuntos
Modelos Biológicos , Modelos Teóricos , Humanos , Simulação por Computador , Transdução de Sinais/genética , Invasividade Neoplásica , Microambiente Tumoral
5.
Genes Dev ; 29(24): 2547-62, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26637281

RESUMO

Alterations of chromatin modifiers are frequent in cancer, but their functional consequences often remain unclear. Focusing on the Polycomb protein EZH2 that deposits the H3K27me3 (trimethylation of Lys27 of histone H3) mark, we showed that its high expression in solid tumors is a consequence, not a cause, of tumorigenesis. In mouse and human models, EZH2 is dispensable for prostate cancer development and restrains breast tumorigenesis. High EZH2 expression in tumors results from a tight coupling to proliferation to ensure H3K27me3 homeostasis. However, this process malfunctions in breast cancer. Low EZH2 expression relative to proliferation and mutations in Polycomb genes actually indicate poor prognosis and occur in metastases. We show that while altered EZH2 activity consistently modulates a subset of its target genes, it promotes a wider transcriptional instability. Importantly, transcriptional changes that are consequences of EZH2 loss are predominantly irreversible. Our study provides an unexpected understanding of EZH2's contribution to solid tumors with important therapeutic implications.


Assuntos
Neoplasias da Mama/enzimologia , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica/genética , Complexo Repressor Polycomb 2/metabolismo , Animais , Animais Geneticamente Modificados , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proteína Potenciadora do Homólogo 2 de Zeste , Feminino , Histonas/metabolismo , Homeostase/genética , Humanos , Masculino , Complexo Repressor Polycomb 2/genética , Prognóstico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética
6.
J Cell Sci ; 133(12)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32467329

RESUMO

Recent developments in techniques for tissue clearing and size reduction have enabled optical imaging of whole organs and the study of rare tumorigenic events in vivo The adult mammary gland provides a unique model for investigating physiological or pathological processes such as morphogenesis or epithelial cell dissemination. Here, we establish a new pipeline to study rare cellular events occurring in the mammary gland, by combining orthotopic transplantation of mammary organoids with the uDISCO organ size reduction and clearing method. This strategy allows us to analyze the behavior of individually labeled cells in regenerated mammary gland. As a proof of concept, we analyzed the localization of rare epithelial cells overexpressing atypical protein kinase C iota (also known as PRKCI, referred to here as aPKCι) with an N-terminal eGFP fusion (GFP-aPKCι+) in the normal mammary gland. Using this analytical pipeline, we were able to visualize epithelial aPKCι+ cells escaping from the normal mammary epithelium and disseminating into the surrounding stroma. This technical resource should benefit mammary development and tumor progression studies.


Assuntos
Glândulas Mamárias Humanas , Organoides , Animais , Células Epiteliais , Epitélio , Humanos , Glândulas Mamárias Animais , Morfogênese
7.
Proc Natl Acad Sci U S A ; 116(48): 24108-24114, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31699818

RESUMO

Metastasis is the main cause of cancer-related deaths. How a single oncogenic cell evolves within highly organized epithelium is still unknown. Here, we found that the overexpression of the protein kinase atypical protein kinase C ι (aPKCi), an oncogene, triggers basally oriented epithelial cell extrusion in vivo as a potential mechanism for early breast tumor cell invasion. We found that cell segregation is the first step required for basal extrusion of luminal cells and identify aPKCi and vinculin as regulators of cell segregation. We propose that asymmetric vinculin levels at the junction between normal and aPKCi+ cells trigger an increase in tension at these cell junctions. Moreover, we show that aPKCi+ cells acquire promigratory features, including increased vinculin levels and vinculin dynamics at the cell-substratum contacts. Overall, this study shows that a balance between cell contractility and cell-cell adhesion is crucial for promoting basally oriented cell extrusion, a mechanism for early breast cancer cell invasion.


Assuntos
Neoplasias da Mama/metabolismo , Isoenzimas/fisiologia , Proteína Quinase C/fisiologia , Vinculina/metabolismo , Neoplasias da Mama/patologia , Adesão Celular , Linhagem Celular Tumoral , Separação Celular , Humanos , Junções Intercelulares/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Invasividade Neoplásica , Proteína Quinase C/genética , Proteína Quinase C/metabolismo
8.
J Cell Sci ; 131(17)2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30111578

RESUMO

Tumor cell invasion and metastasis formation are the major cause of death in cancer patients. These processes rely on extracellular matrix (ECM) degradation mediated by organelles termed invadopodia, to which the transmembrane matrix metalloproteinase MT1-MMP (also known as MMP14) is delivered from its reservoir, the RAB7-containing endolysosomes. How MT1-MMP is targeted to endolysosomes remains to be elucidated. Flotillin-1 and -2 are upregulated in many invasive cancers. Here, we show that flotillin upregulation triggers a general mechanism, common to carcinoma and sarcoma, which promotes RAB5-dependent MT1-MMP endocytosis and its delivery to RAB7-positive endolysosomal reservoirs. Conversely, flotillin knockdown in invasive cancer cells greatly reduces MT1-MMP accumulation in endolysosomes, its subsequent exocytosis at invadopodia, ECM degradation and cell invasion. Our results demonstrate that flotillin upregulation is necessary and sufficient to promote epithelial and mesenchymal cancer cell invasion and ECM degradation by controlling MT1-MMP endocytosis and delivery to the endolysosomal recycling compartment.


Assuntos
Endossomos/metabolismo , Lisossomos/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Linhagem Celular Tumoral , Endocitose , Endossomos/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Humanos , Lisossomos/genética , Metaloproteinase 14 da Matriz/genética , Proteínas de Membrana/genética , Invasividade Neoplásica , Neoplasias/genética , Neoplasias/patologia , Podossomos/genética , Podossomos/metabolismo , Transporte Proteico , Regulação para Cima , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
9.
Nature ; 502(7472): 567-70, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24097348

RESUMO

In most eukaryotic cells microtubules undergo post-translational modifications such as acetylation of α-tubulin on lysine 40, a widespread modification restricted to a subset of microtubules that turns over slowly. This subset of stable microtubules accumulates in cell protrusions and regulates cell polarization, migration and invasion. However, mechanisms restricting acetylation to these microtubules are unknown. Here we report that clathrin-coated pits (CCPs) control microtubule acetylation through a direct interaction of the α-tubulin acetyltransferase αTAT1 (refs 8, 9) with the clathrin adaptor AP2. We observe that about one-third of growing microtubule ends contact and pause at CCPs and that loss of CCPs decreases lysine 40 acetylation levels. We show that αTAT1 localizes to CCPs through a direct interaction with AP2 that is required for microtubule acetylation. In migrating cells, the polarized orientation of acetylated microtubules correlates with CCP accumulation at the leading edge, and interaction of αTAT1 with AP2 is required for directional migration. We conclude that microtubules contacting CCPs become acetylated by αTAT1. In migrating cells, this mechanism ensures the acetylation of microtubules oriented towards the leading edge, thus promoting directional cell locomotion and chemotaxis.


Assuntos
Acetiltransferases/metabolismo , Clatrina/metabolismo , Invaginações Revestidas da Membrana Celular/metabolismo , Microtúbulos/metabolismo , Acetilação , Complexo 2 de Proteínas Adaptadoras/metabolismo , Biocatálise , Movimento Celular , Invaginações Revestidas da Membrana Celular/enzimologia , Células HeLa , Humanos , Microtúbulos/química , Ligação Proteica , Tubulina (Proteína)/metabolismo
10.
EMBO Rep ; 17(7): 1061-80, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27255086

RESUMO

The mechanisms of tumor cell dissemination and the contribution of membrane trafficking in this process are poorly understood. Through a functional siRNA screening of human RAB GTPases, we found that RAB2A, a protein essential for ER-to-Golgi transport, is critical in promoting proteolytic activity and 3D invasiveness of breast cancer (BC) cell lines. Remarkably, RAB2A is amplified and elevated in human BC and is a powerful and independent predictor of disease recurrence in BC patients. Mechanistically, RAB2A acts at two independent trafficking steps. Firstly, by interacting with VPS39, a key component of the late endosomal HOPS complex, it controls post-endocytic trafficking of membrane-bound MT1-MMP, an essential metalloprotease for matrix remodeling and invasion. Secondly, it further regulates Golgi transport of E-cadherin, ultimately controlling junctional stability, cell compaction, and tumor invasiveness. Thus, RAB2A is a novel trafficking determinant essential for regulation of a mesenchymal invasive program of BC dissemination.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caderinas/metabolismo , Complexo de Golgi/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Biomarcadores Tumorais , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Endossomos/metabolismo , Exocitose , Matriz Extracelular/metabolismo , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Inativação Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Invasividade Neoplásica , Prognóstico , Transporte Proteico , Proteólise , Recidiva , Proteínas Supressoras de Tumor/metabolismo , Proteínas rab de Ligação ao GTP/genética
11.
Proc Natl Acad Sci U S A ; 111(18): E1872-9, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24753582

RESUMO

Dissemination of carcinoma cells requires the pericellular degradation of the extracellular matrix, which is mediated by membrane type 1-matrix metalloproteinase (MT1-MMP). In this article, we report a co-up-regulation and colocalization of MT1-MMP and atypical protein kinase C iota (aPKCι) in hormone receptor-negative breast tumors in association with a higher risk of metastasis. Silencing of aPKC in invasive breast-tumor cell lines impaired the delivery of MT1-MMP from late endocytic storage compartments to the surface and inhibited matrix degradation and invasion. We provide evidence that aPKCι, in association with MT1-MMP-containing endosomes, phosphorylates cortactin, which is present in F-actin-rich puncta on MT1-MMP-positive endosomes and regulates cortactin association with the membrane scission protein dynamin-2. Thus, cell line-based observations and clinical data reveal the concerted activity of aPKC, cortactin, and dynamin-2, which control the trafficking of MT1-MMP from late endosome to the plasma membrane and play an important role in the invasive potential of breast-cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Isoenzimas/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Proteína Quinase C/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adulto , Idoso , Transporte Biológico Ativo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Linhagem Celular Tumoral , Cortactina/metabolismo , Grânulos Citoplasmáticos/metabolismo , Progressão da Doença , Dinamina II/metabolismo , Endossomos/metabolismo , Matriz Extracelular/metabolismo , Feminino , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Metaloproteinase 14 da Matriz/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , Fosforilação , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , RNA Interferente Pequeno/genética , Regulação para Cima
12.
Breast Cancer Res ; 18(1): 23, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26887652

RESUMO

BACKGROUND: Polarity defects are a hallmark of most carcinomas. Cells from invasive micropapillary carcinomas (IMPCs) of the breast are characterized by a striking cell polarity inversion and represent an interesting model for the analysis of polarity abnormalities. METHODS: In-depth investigation of polarity proteins in 24 IMPCs and a gene expression profiling, comparing IMPC (n = 73) with invasive carcinomas of no special type (ICNST) (n = 51) have been performed. RESULTS: IMPCs showed a profound disorganization of the investigated polarity proteins and revealed major abnormalities in their subcellular localization. Gene expression profiling experiments highlighted a number of deregulated genes in the IMPCs that have a role in apico-basal polarity, adhesion and migration. LIN7A, a Crumbs-complex polarity gene, was one of the most differentially over-expressed genes in the IMPCs. Upon LIN7A over-expression, we observed hyperproliferation, invasion and a complete absence of lumen formation, revealing strong polarity defects. CONCLUSION: This study therefore shows that LIN7A has a crucial role in the polarity abnormalities associated with breast carcinogenesis.


Assuntos
Neoplasias da Mama/genética , Carcinogênese/genética , Polaridade Celular/genética , Proteínas de Membrana/biossíntese , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática , Proteínas de Membrana/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proteínas de Transporte Vesicular
13.
Curr Opin Cell Biol ; 20(4): 454-61, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18472411

RESUMO

Cytokinesis is the final step of mitosis whereby two daughter cells physically separate. It is initiated by the assembly of an actomyosin contractile ring at the mitotic cell equator, which constricts the cytoplasm between the two reforming nuclei resulting in the formation of a narrow intercellular bridge filled with central spindle microtubule bundles. Cytokinesis terminates with the cleavage of the intercellular bridge in a poorly understood process called abscission. Recent work has highlighted the importance of membrane trafficking events occurring from membrane compartments flanking the bridge to the central midbody region. In particular, polarized delivery of endocytic recycling membranes is essential for completion of animal cell cytokinesis. Why endocytic traffic occurs within the intercellular bridge remains largely mysterious and its significance for cytokinesis will be discussed.


Assuntos
Citocinese/fisiologia , Endocitose/fisiologia , Vesículas Transportadoras/metabolismo , Animais , Estruturas Celulares , Mitose , Fuso Acromático
14.
Proc Natl Acad Sci U S A ; 108(5): 1943-8, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21245302

RESUMO

Cancer cells use different modes of migration, including integrin-dependent mesenchymal migration of elongated cells along elements of the 3D matrix as opposed to low-adhesion-, contraction-based amoeboid motility of rounded cells. We report that MDA-MB-231 human breast adenocarcinoma cells invade 3D Matrigel with a characteristic rounded morphology and with F-actin and myosin-IIa accumulating at the cell rear in a uropod-like structure. MDA-MB-231 cells display neither lamellipodia nor bleb extensions at the leading edge and do not require Arp2/3 complex activity for 3D invasion in Matrigel. Accumulation of phospho-MLC and blebbing activity were restricted to the uropod as reporters of actomyosin contractility, and velocimetric analysis of fluorescent beads embedded within the 3D matrix showed that pulling forces exerted to the matrix are restricted to the side and rear of cells. Inhibition of actomyosin contractility or ß1 integrin function interferes with uropod formation, matrix deformation, and invasion through Matrigel. These findings support a model whereby actomyosin-based uropod contractility generates traction forces on the ß1 integrin adhesion system to drive cell propulsion within the 3D matrix, with no contribution of lamellipodia extension or blebbing to movement.


Assuntos
Adenocarcinoma/patologia , Neoplasias da Mama/patologia , Colágeno , Laminina , Invasividade Neoplásica , Proteoglicanas , Linhagem Celular Tumoral , Movimento Celular , Combinação de Medicamentos , Feminino , Humanos , Integrina beta1/metabolismo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Miosina Tipo II/metabolismo
15.
EMBO J ; 28(18): 2835-45, 2009 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-19644450

RESUMO

The JNK-interacting proteins, JIP3 and JIP4, are specific effectors of the small GTP-binding protein ARF6. The interaction of ARF6-GTP with the second leucine zipper (LZII) domains of JIP3/JIP4 regulates the binding of JIPs to kinesin-1 and dynactin. Here, we report the crystal structure of ARF6-GTP bound to the JIP4-LZII at 1.9 A resolution. The complex is a heterotetramer with dyad symmetry arranged in an ARF6-(JIP4)(2)-ARF6 configuration. Comparison of the ARF6-JIP4 interface with the equivalent region of ARF1 shows the structural basis of JIP4's specificity for ARF6. Using site-directed mutagenesis and surface plasmon resonance, we further show that non-conserved residues at the switch region borders are the key structural determinants of JIP4 specificity. A structure-derived model of the association of the ARF6-JIP3/JIP4 complex with membranes shows that the JIP4-LZII coiled-coil should lie along the membrane to prevent steric hindrances, resulting in only one ARF6 molecule bound. Such a heterotrimeric complex gives insights to better understand the ARF6-mediated motor switch regulatory function.


Assuntos
Fatores de Ribosilação do ADP/química , Proteínas Adaptadoras de Transdução de Sinal/química , Cinesinas/química , Proteínas Associadas aos Microtúbulos/química , Fator 6 de Ribosilação do ADP , Sequência de Aminoácidos , Dimerização , Complexo Dinactina , Guanosina Trifosfato/metabolismo , Modelos Biológicos , Conformação Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ressonância de Plasmônio de Superfície
16.
Methods Mol Biol ; 2608: 225-246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36653711

RESUMO

Tumor dissemination involves cancer cell migration through the extracellular matrix (ECM). ECM is mainly composed of collagen fibers that oppose cell invasion. To overcome hindrance in the matrix, cancer cells deploy a protease-dependent program in order to remodel the matrix fibers. Matrix remodeling requires the formation of actin-based matrix/plasma membrane contact sites called invadopodia, responsible for collagen cleavage through the accumulation and activity of the transmembrane type-I matrix metalloproteinase (MT1-MMP). In this article, we describe experimental procedures designed to assay for invadopodia formation and for invadopodia activity using 2D and 3D models based on gelatin (denatured collagen) and fibrillar type-I collagen matrices.


Assuntos
Podossomos , Humanos , Podossomos/metabolismo , Linhagem Celular Tumoral , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Movimento Celular , Metaloproteinase 14 da Matriz/metabolismo , Invasividade Neoplásica/patologia
17.
Nat Cell Biol ; 25(12): 1787-1803, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37903910

RESUMO

Invadosomes and caveolae are mechanosensitive structures that are implicated in metastasis. Here, we describe a unique juxtaposition of caveola clusters and matrix degradative invadosomes at contact sites between the plasma membrane of cancer cells and constricting fibrils both in 2D and 3D type I collagen matrix environments. Preferential association between caveolae and straight segments of the fibrils, and between invadosomes and bent segments of the fibrils, was observed along with matrix remodelling. Caveola recruitment precedes and is required for invadosome formation and activity. Reciprocally, invadosome disruption results in the accumulation of fibril-associated caveolae. Moreover, caveolae and the collagen receptor ß1 integrin co-localize at contact sites with the fibrils, and integrins control caveola recruitment to fibrils. In turn, caveolae mediate the clearance of ß1 integrin and collagen uptake in an invadosome-dependent and collagen-cleavage-dependent mechanism. Our data reveal a reciprocal interplay between caveolae and invadosomes that coordinates adhesion to and proteolytic remodelling of confining fibrils to support tumour cell dissemination.


Assuntos
Podossomos , Humanos , Matriz Extracelular/metabolismo , Cavéolas/metabolismo , Integrina beta1/metabolismo , Colágeno Tipo I/metabolismo , Invasividade Neoplásica
18.
J Cell Biol ; 222(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36250940

RESUMO

Integrin endocytosis is essential for many fundamental cellular processes. Whether and how the internalization impacts cellular mechanics remains elusive. Whereas previous studies reported the contribution of the integrin activator, talin, in force development, the involvement of inhibitors is less documented. We identified ICAP-1 as an integrin inhibitor involved in mechanotransduction by co-working with NME2 to control clathrin-mediated endocytosis of integrins at the edge of focal adhesions (FA). Loss of ICAP-1 enables ß3-integrin-mediated force generation independently of ß1 integrin. ß3-integrin-mediated forces were associated with a decrease in ß3 integrin dynamics stemming from their reduced diffusion within adhesion sites and slow turnover of FA. The decrease in ß3 integrin dynamics correlated with a defect in integrin endocytosis. ICAP-1 acts as an adaptor for clathrin-dependent endocytosis of integrins. ICAP-1 controls integrin endocytosis by interacting with NME2, a key regulator of dynamin-dependent clathrin-coated pits fission. Control of clathrin-mediated integrin endocytosis by an inhibitor is an unprecedented mechanism to tune forces at FA.


Assuntos
Clatrina , Endocitose , Adesões Focais , Integrina beta1 , Integrina beta3 , Clatrina/metabolismo , Endocitose/fisiologia , Integrina beta1/genética , Mecanotransdução Celular , Talina/genética
19.
Sci Adv ; 9(37): eadd9084, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703363

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is part of the amino acid sensing machinery that becomes activated on the endolysosomal surface in response to nutrient cues. Branched actin generated by WASH and Arp2/3 complexes defines endolysosomal microdomains. Here, we find mTORC1 components in close proximity to endolysosomal actin microdomains. We investigated for interactors of the mTORC1 lysosomal tether, RAGC, by proteomics and identified multiple actin filament capping proteins and their modulators. Perturbation of RAGC function affected the size of endolysosomal actin, consistent with a regulation of actin filament capping by RAGC. Reciprocally, the pharmacological inhibition of actin polymerization or alteration of endolysosomal actin obtained upon silencing of WASH or Arp2/3 complexes impaired mTORC1 activity. Mechanistically, we show that actin is required for proper association of RAGC and mTOR with endolysosomes. This study reveals an unprecedented interplay between actin and mTORC1 signaling on the endolysosomal system.


Assuntos
Actinas , Transdução de Sinais , Alvo Mecanístico do Complexo 1 de Rapamicina , Citoesqueleto de Actina , Lisossomos
20.
Hum Mol Genet ; 19(2): 262-75, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19864490

RESUMO

Targeting of numerous transmembrane proteins to the cell surface is thought to depend on their recognition by cargo receptors that interact with the adaptor machinery for anterograde traffic at the distal end of the Golgi complex. We report here on consortin, a novel integral membrane protein that is predicted to be intrinsically disordered, i.e. that contains large segments whose native state is unstructured. We identified consortin as a binding partner of connexins, the building blocks of gap junctions. Consortin is located at the trans-Golgi network (TGN), in tubulovesicular transport organelles, and at the plasma membrane. It directly interacts with the TGN clathrin adaptors GGA1 and GGA2, and disruption of this interaction by expression of a consortin mutant lacking the acidic cluster-dileucine (DXXLL) GGA interaction motif causes an intracellular accumulation of several connexins. RNA interference-mediated silencing of consortin expression in HeLa cells blocks the cell surface targeting of these connexins, which accumulate intracellularly, whereas partial depletion and redistribution of the consortin pool slows down the intracellular degradation of gap junction plaques. Altogether, our results show that, by studying connexin trafficking, we have identified the first TGN cargo receptor for the targeting of transmembrane proteins to the plasma membrane. The identification of consortin provides in addition a potential target for therapies aimed at diseases in which connexin traffic is altered, including cardiac ischemia, peripheral neuropathies, cataracts and hearing impairment. Sequence accession numbers. GenBank: Human CNST cDNA, NM_152609; mouse Cnst cDNA, NM_146105.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Conexinas/metabolismo , Proteínas de Membrana/metabolismo , Rede trans-Golgi/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Proteínas de Transporte/genética , Membrana Celular/genética , Conexinas/genética , Células HeLa , Humanos , Proteínas de Membrana/genética , Camundongos , Ligação Proteica , Transporte Proteico , Rede trans-Golgi/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa