Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2233, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472204

RESUMO

The Tibetan Plateau (TP), known as the Asian water tower, has been getting wetter since the 1970s. However, the primary drivers behind this phenomenon are still highly controversial. Here, we isolate the impacts of greenhouse gases (GHG), aerosols, natural forcings and internal climate variability on the decadal change of summer water vapor budget (WVB) over the TP using multi-model ensemble simulations. We show that an anomalous Rossby wave train in the upper troposphere travelling eastward from central Europe and equatorward temperature gradient in eastern China due to the inhomogeneous aerosol forcing in Eurasia jointly contribute to anomalous easterly winds over the eastern TP. Such anomalous easterly winds result in a significant decrease in water vapor export from the eastern boundary of the TP and dominate the enhanced summer WVB over the TP during 1979-2014. Our results highlight that spatial variation of aerosol forcing can be used as an important indicator to project future WVB over the TP.

2.
Environ Pollut ; 343: 123182, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38123119

RESUMO

Black carbon (BC) constitutes a pivotal component of atmospheric aerosols, significantly impacting regional and global radiation balance, climate, and human health. In this study, we evaluated BC data in two prominent atmospheric composition reanalysis datasets: the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) and the Copernicus Atmosphere Monitoring Service (CAMS), and analyzed the causes of their deviations. This assessment is based on observational data collected from 34 monitoring stations across China from 2006 to 2022. Our research reveals a significant and consistent decline in BC concentrations within China, amounting to a reduction exceeding 67.33%. However, both MERRA-2 and CAMS reanalysis data fail to capture this declining trend. The average annual decrease of BC in MERRA-2 from 2006 to 2022 is only 0.06 µg/m3 per year, while the BC concentration in CAMS even increased with an average annual value of 0.014 µg/m3 per year. In 2022, MERRA-2 had overestimated BC concentration by 20% compared to observational data, while CAMS had overestimated it by approximately 66%. In the regional BC concentration analysis, the data quality of the reanalysis data is better in the South China (RM = 0.59, RC = 0.53), followed by the North China (RM = 0.50, RC = 0.42). Reanalysis BC data in Northwest China and the Tibetan Plateau are difficult to use for practical analysis due to their big difference with observation. In a comparison of the anthropogenic BC emissions inventory used in the two atmospheric composition reanalysis datasets with the Multi-resolution Emission Inventory model for Climate and air pollution research (MEIC) emissions inventory, we found that: Despite the significant decline in China's BC emissions, MERRA-2 still relies on the 2006 emissions inventory, while CAMS utilizes emission inventories that even show an increasing trend. These factors will undoubtedly lead to greater deviations between reanalysis and observational data.


Assuntos
Poluentes Atmosféricos , Humanos , Poluentes Atmosféricos/análise , Estudos Retrospectivos , China , Atmosfera/análise , Aerossóis/análise , Fuligem/análise , Carbono/análise , Monitoramento Ambiental
3.
Sci Total Environ ; 927: 172337, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608908

RESUMO

Fire emissions in Southeast Asia transported to southern China every spring (March-May), influencing not only the air quality but also the weather and climate. However, the multi-year variations and magnitude of this impact on aerosol radiation forcing in southern China remain unclear. Here, we quantified the multi-year contributions of fire emissions in Indo-China Peninsula (ICP) region to aerosol radiation forcing in the various southern Chinese provinces during the fire season (March-May) of 2013-2019 combining the 3-dimension chemical transport model and the Column Radiation Model (CRM) simulations. The models' evaluations showed they reasonably capture the temporal and spatial distribution of surface aerosol concentrations and column aerosol optical properties over the study regions. The fire emissions over the ICP region were found to increase the aerosol optical depth (AOD) value by 0.1 (15 %) and reduce the single scattering albedo (SSA) in three southern regions of China (Yunnan-YN, Guangxi-GX, and Guangdong-GD from west to east), owing to increases in the proportions of black carbon (BC, 0.4 % ± 0.1 %) and organic carbon (OC, 3.0 % ± 0.9 %) within the aerosol compositions. The transported smoke aerosols cooled surface but heated the atmosphere in the southern China regions, with the largest mean reduction of -5 Wm-2 (-3 %) in surface shortwave radiation forcing and the maximum daily contributions of about -15 Wm-2 (-15 %) to the atmosphere radiation forcing in the GX region, followed by the GD and YN regions. The impacts of ICP fire emissions on aerosol optical and radiative parameters declined during 2013-2019, with the highest rate of 0.393 ± 0.478 Wm-2 yr-1 in the GX for the shortwave radiation forcing in the atmosphere. Besides, their yearly changes in the contribution were consistent with the annual fire emissions in the ICP region. Such strong radiative perturbations of ICP fire emissions were expected to influence regional meteorology in southern China and should be considered in the climate simulations.

4.
Nat Commun ; 15(1): 5225, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890272

RESUMO

Economic productivity depends on reliable access to electricity, but the extreme shortage events of variable wind-solar systems may be strongly affected by climate change. Here, hourly reanalysis climatological data are leveraged to examine historical trends in defined extreme shortage events worldwide. We find uptrends in extreme shortage events regardless of their frequency, duration, and intensity since 1980. For instance, duration of extreme low-reliability events worldwide has increased by 4.1 hours (0.392 hours per year on average) between 1980-2000 and 2001-2022. However, such ascending trends are unevenly distributed worldwide, with a greater variability in low- and middle-latitude developing countries. This uptrend in extreme shortage events is driven by extremely low wind speed and solar radiation, particularly compound wind and solar drought, which however are strongly disproportionated. Only average 12.5% change in compound extremely low wind speed and solar radiation events may give rise to over 30% variability in extreme shortage events, despite a mere average 1.0% change in average wind speed and solar radiation. Our findings underline that wind-solar systems will probably suffer from weakened power security if such uptrends persist in a warmer future.

5.
Sci Adv ; 10(25): eadm8270, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38896619

RESUMO

East Asian winter monsoon (EAWM) activity has had profound effects on environmental change throughout East Asia and the western Pacific. Much attention has been paid to Quaternary EAWM evolution, while long-term EAWM fluctuation characteristics and drivers remain unclear, particularly during the late Miocene when marked global climate and Asian paleogeographic changes occurred. To clarify understanding of late Miocene EAWM evolution, we developed a high-precision 9-million-year-long stacked EAWM record from Northwest Pacific Ocean abyssal sediments based on environmental magnetism, sedimentology, and geochemistry, which reveals a strengthened late Miocene EAWM. Our paleoclimate simulations also indicate that atmospheric CO2 decline played a vital role in this EAWM intensification over the Northwest Pacific Ocean compared to other factors, including central Asian orogenic belt and northeastern Tibetan Plateau uplift and Antarctic ice-sheet expansion. Our results expand understanding of EAWM evolution from inland areas to the open ocean and indicate the importance of atmospheric CO2 fluctuations on past EAWM variability over large spatial scales.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa