Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526659

RESUMO

It is well established that plasmids play an important role in the dissemination of antimicrobial resistance (AMR) genes; however, little is known about the role of the underlying interactions between different plasmid categories and other mobile genetic elements (MGEs) in shaping the promiscuous spread of AMR genes. Here, we developed a tool designed for plasmid classification, AMR gene annotation, and plasmid visualization and found that most plasmid-borne AMR genes, including those localized on class 1 integrons, are enriched in conjugative plasmids. Notably, we report the discovery and characterization of a massive insertion sequence (IS)-associated AMR gene transfer network (245 combinations covering 59 AMR gene subtypes and 53 ISs) linking conjugative plasmids and phylogenetically distant pathogens, suggesting a general evolutionary mechanism for the horizontal transfer of AMR genes mediated by the interaction between conjugative plasmids and ISs. Moreover, our experimental results confirmed the importance of the observed interactions in aiding the horizontal transfer and expanding the genetic range of AMR genes within complex microbial communities.


Assuntos
Conjugação Genética , Farmacorresistência Bacteriana/genética , Transferência Genética Horizontal/genética , Genes Bacterianos , Mutagênese Insercional/genética , Plasmídeos/genética , Cromossomos Bacterianos/genética , Mosaicismo , Filogenia , Sintenia/genética
2.
Environ Sci Technol ; 56(18): 13096-13106, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36040144

RESUMO

Acesulfame (ACE) is considered to be an emerging pollutant associated with growing concerns. Although aerobic biodegradation of ACE has been observed in wastewater treatment plants worldwide and verified in pure cultures, limited information is available on ACE biodegradation under anoxic conditions, which are ubiquitous in natural environments. Here, we found that ACE could be mineralized completely via a process coupled with nitrate reduction by enriched consortia, with the highest degradation rate of 9.95 mg ACE/g VSS·h-1. Meanwhile, three novel ACE-degrading strains affiliated with Shinella were isolated, examined, and sequenced, revealing that the isolates could utilize ACE as the sole carbon source under both aerobic and anoxic conditions, with maximum degradation rates of 30.3 mg ACE/g VSS·h-1 and 8.92 mg ACE/g VSS·h-1, respectively. Additionally, the biodegradation of ACE was suspected to be a plasmid-mediated process based on comparative genomic analysis. In ACE-degrading consortia, 83 near-complete metagenome-assembled genomes (MAGs) were obtained via Illumina and Nanopore sequencing, showing that Proteobacteria and Bacteroidetes were the dominant phyla. Moreover, nine MAGs affiliated with Hyphomicrobiales were proposed to be the major ACE degraders in the enrichments. This study demonstrated that ACE could be degraded under anoxic conditions, providing novel insights into ACE biodegradation in the environment.


Assuntos
Poluentes Ambientais , Nitratos , Biodegradação Ambiental , Carbono , Edulcorantes , Tiazinas
5.
Anal Chem ; 90(22): 13173-13177, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30354065

RESUMO

In this study, we develop a method to detect multiple DNAs of foodborne pathogens by encapsulating emulsion droplets for loop-mediated isothermal amplification (LAMP). In contrast to the traditional bulk-phase LAMP, which involves a labor-intensive mixing process, with our method, different primers are automatically mixed with DNA samples and LAMP buffers after picoinjection. By directly observing and analyzing the fluorescence intensity of the resultant droplets, one can detect DNA from different pathogens, with a detection limit 500 times lower than that obtained by bulk-phase LAMP. We further demonstrate the ability to quantify bacteria concentration by detecting bacterial DNA in practical samples, showing great potential in monitoring water resources and their contamination by pathogenic bacteria.


Assuntos
Bactérias/isolamento & purificação , DNA Bacteriano/análise , Contaminação de Alimentos/análise , Técnicas Analíticas Microfluídicas/métodos , Bactérias/genética , Doenças Transmitidas por Alimentos/prevenção & controle , Dispositivos Lab-On-A-Chip , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade , Águas Residuárias/análise
6.
Appl Microbiol Biotechnol ; 101(15): 6253-6260, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28584911

RESUMO

Emergence of new antibiotic resistance bacteria poses a serious threat to human health, which is largely attributed to the evolution and spread of antibiotic resistance genes (ARGs). In this work, a metagenomics-guided strategy consisting of metagenomic analysis and function validation was proposed for rapidly identifying novel ARGs from hot spots of ARG dissemination, such as wastewater treatment plants (WWTPs) and animal feces. We used an antibiotic resistance gene database to annotate 76 putative ß-lactam resistance genes from the metagenomes of sludge and chicken feces. Among these 76 candidate genes, 25 target genes that shared 40~70% amino acid identity to known ß-lactamases were cloned by PCR from the metagenomes. Their resistances to four ß-lactam antibiotics were further demonstrated. Furthermore, the validated ARGs were used as the reference sequences to identify novel ARGs in eight environmental samples, suggesting the necessity of re-examining the profiles of ARGs in environmental samples using the validated novel ARG sequences. This metagenomics-guided pipeline does not rely on the activity of ARGs during the initial screening process and may specifically select novel ARG sequences for function validation, which make it suitable for the high-throughput screening of novel ARGs from environmental metagenomes.


Assuntos
Bioprospecção , Farmacorresistência Bacteriana/genética , Fezes/microbiologia , Metagenoma , Metagenômica/métodos , Resistência beta-Lactâmica/genética , Animais , Antibacterianos/farmacologia , Galinhas/microbiologia , Bases de Dados Genéticas , Genes Bacterianos , Humanos , Esgotos/microbiologia , Águas Residuárias/microbiologia , beta-Lactamases/genética , beta-Lactamas/farmacologia
7.
Biodegradation ; 26(3): 223-33, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25917649

RESUMO

Agricultural soils are usually co-contaminated with organophosphate (OP) and pyrethroid pesticides. To develop a stable and marker-free Pseudomonas putida for co-expression of two pesticide-degrading enzymes, we constructed a suicide plasmid with expression cassettes containing a constitutive promoter J23119, an OP-degrading gene (mpd), a pyrethroid-hydrolyzing carboxylesterase gene (pytH) that utilizes the upp gene as a counter-selectable marker for upp-deficient P. putida. By introduction of suicide plasmid and two-step homologous recombination, both mpd and pytH genes were integrated into the chromosome of a robust soil bacterium P. putida KT2440 and no selection marker was left on chromosome. Functional expression of mpd and pytH in P. putida KT2440 was demonstrated by Western blot analysis and enzyme activity assays. Degradation experiments with liquid cultures showed that the mixed pesticides including methyl parathion, fenitrothion, chlorpyrifos, permethrin, fenpropathrin, and cypermethrin (0.2 mM each) were degraded completely within 48 h. The inoculation of engineered strain (10(6) cells/g) to soils treated with the above mixed pesticides resulted in a higher degradation rate than in noninoculated soils. All six pesticides could be degraded completely within 15 days in fumigated and nonfumigated soils with inoculation. Theses results highlight the potential of the engineered strain to be used for in situ bioremediation of soils co-contaminated with OP and pyrethroid pesticides.


Assuntos
Inseticidas/química , Organofosfatos/química , Pseudomonas putida/genética , Piretrinas/química , Poluentes do Solo/química , Biodegradação Ambiental , Genes Bacterianos , Engenharia Genética , Vetores Genéticos , Plasmídeos , Pseudomonas putida/metabolismo , Microbiologia do Solo
8.
Infect Control Hosp Epidemiol ; 45(3): 284-291, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38149351

RESUMO

OBJECTIVE: We studied the extent of carbapenemase-producing Enterobacteriaceae (CPE) sink contamination and transmission to patients in a nonoutbreak setting. METHODS: During 2017-2019, 592 patient-room sinks were sampled in 34 departments. Patient weekly rectal swab CPE surveillance was universally performed. Repeated sink sampling was conducted in 9 departments. Isolates from patients and sinks were characterized using pulsed-field gel electrophoresis (PFGE), and pairs of high resemblance were sequenced by Oxford Nanopore and Illumina. Hybrid assembly was used to fully assemble plasmids, which are shared between paired isolates. RESULTS: In total, 144 (24%) of 592 CPE-contaminated sinks were detected in 25 of 34 departments. Repeated sampling (n = 7,123) revealed that 52%-100% were contaminated at least once during the sampling period. Persistent contamination for >1 year by a dominant strain was common. During the study period, 318 patients acquired CPE. The most common species were Klebsiella pneumoniae, Escherichia coli, and Enterobacter spp. In 127 (40%) patients, a contaminated sink was the suspected source of CPE acquisition. For 20 cases with an identical sink-patient strain, temporal relation suggested sink-to-patient transmission. Hybrid assembly of specific sink-patient isolates revealed that shared plasmids were structurally identical, and SNP differences between shared pairs, along with signatures for potential recombination events, suggests recent sharing of the plasmids. CONCLUSIONS: CPE-contaminated sinks are an important source of transmission to patients. Although traditionally person-to-person transmission has been considered the main route of CPE transmission, these data suggest a change in paradigm that may influence strategies of preventing CPE dissemination.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Enterobacteriaceae , Humanos , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriaceae , beta-Lactamases/genética , Proteínas de Bactérias/genética , Klebsiella pneumoniae/genética , Escherichia coli , Infecções por Enterobacteriaceae/epidemiologia
9.
mSystems ; 8(6): e0017823, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38032189

RESUMO

IMPORTANCE: Different from other extensively studied mobile genetic elements (MGEs) whose discoveries were initiated decades ago (1950s-1980s), integrative and conjugative elements (ICEs), a diverse array of more recently identified elements that were formally termed in 2002, have aroused increasing concern for their crucial contribution to the dissemination of antibiotic resistance genes (ARGs). However, the comprehensive understanding on ICEs' ARG profile across the bacterial tree of life is still blurred. Through a genomic study by comparison with two key MGEs, we, for the first time, systematically investigated the ARG profile as well as the host range of ICEs and also explored the MGE-specific potential to facilitate ARG propagation across phylogenetic barriers. These findings could serve as a theoretical foundation for risk assessment of ARGs mediated by distinct MGEs and further to optimize therapeutic strategies aimed at restraining antibiotic resistance crises.


Assuntos
Antibacterianos , Conjugação Genética , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Transferência Genética Horizontal/genética , Genômica , Filogenia
10.
RSC Adv ; 13(49): 34475-34481, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38024997

RESUMO

Most ferroelectric oxides exhibit relatively wide bandgaps, which pose limitations on their suitability for photovoltaics application. CuNbO3 possesses potential ferroelectric properties with an R3c polar structure that facilitate the separation of charge carriers under illumination, promoting the generation of photovoltaic effects. The optical and ferroelectric properties of R3c-CuNbO3, as well as the effect of strain on the properties are investigated by first-principles calculation in this paper. The calculated results indicate that R3c-CuNbO3 possesses a moderate band gap to absorb visible light. The interaction of Cu-O and Nb-O bonds is considered to have a crucial role in the photovoltaic properties of CuNbO3, contributing to the efficient absorption of visible light. The bandgap of CuNbO3 becomes smaller and the density of states near the conduction and valence bands becomes relatively uniform in distribution under compressive conditions, which improves the photoelectric conversion efficiency to 29.9% under conditions of bulk absorption saturation. The ferroelectric properties of CuNbO3 are driven by the Nb-O bond interactions, which are not significantly weakened by the compressive strain. CuNbO3 is expected to be an excellent ferroelectric photovoltaic material by modulation of compressive strain due to the stronger visible light absorption and excellent ferroelectric behavior.

11.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37398010

RESUMO

Metagenome-assembled genomes have greatly expanded the reference genomes for skin microbiome. However, the current reference genomes are largely based on samples from adults in North America and lack representation from infants and individuals from other continents. Here we used ultra-deep shotgun metagenomic sequencing to profile the skin microbiota of 215 infants at age 2-3 months and 12 months who were part of the VITALITY trial in Australia as well as 67 maternally-matched samples. Based on the infant samples, we present the Early-Life Skin Genomes (ELSG) catalog, comprising 9,194 bacterial genomes from 1,029 species, 206 fungal genomes from 13 species, and 39 eukaryotic viral sequences. This genome catalog substantially expands the diversity of species previously known to comprise human skin microbiome and improves the classification rate of sequenced data by 25%. The protein catalog derived from these genomes provides insights into the functional elements such as defense mechanisms that distinguish early-life skin microbiome. We also found evidence for vertical transmission at the microbial community, individual skin bacterial species and strain levels between mothers and infants. Overall, the ELSG catalog uncovers the skin microbiome of a previously underrepresented age group and population and provides a comprehensive view of human skin microbiome diversity, function, and transmission in early life.

12.
Genome Biol ; 24(1): 252, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37946302

RESUMO

BACKGROUND: Metagenome-assembled genomes have greatly expanded the reference genomes for skin microbiome. However, the current reference genomes are largely based on samples from adults in North America and lack representation from infants and individuals from other continents. RESULTS: Here we use deep shotgun metagenomic sequencing to profile the skin microbiota of 215 infants at age 2-3 months and 12 months who are part of the VITALITY trial in Australia as well as 67 maternally matched samples. Based on the infant samples, we present the Early-Life Skin Genomes (ELSG) catalog, comprising 9483 prokaryotic genomes from 1056 species, 206 fungal genomes from 13 species, and 39 eukaryotic viral sequences. This genome catalog substantially expands the diversity of species previously known to comprise human skin microbiome and improves the classification rate of sequenced data by 21%. The protein catalog derived from these genomes provides insights into the functional elements such as defense mechanisms that distinguish early-life skin microbiome. We also find evidence for microbial sharing at the community, bacterial species, and strain levels between mothers and infants. CONCLUSIONS: Overall, the ELSG catalog uncovers the skin microbiome of a previously underrepresented age group and population and provides a comprehensive view of human skin microbiome diversity, function, and development in early life.


Assuntos
Microbiota , Humanos , Lactente , Microbiota/genética , Metagenoma , Bactérias/genética , Austrália , América do Norte , Metagenômica
13.
J Hazard Mater ; 424(Pt D): 127672, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34753648

RESUMO

A toxic and persistent pollutant para-nitrophenol (PNP) enters into the environment through improper industrial waste treatment and agricultural usage of chemical pesticides, leading to a potential risk to humans. Although a variety of PNP-degrading bacteria have been isolated, their application in bioremediation has been precluded due to unknown biosafety, poor PNP-mineralizing capacity, and lack of genome editing tools. In this study, a novel promoter engineering-based strategy is developed for creating efficient PNP-mineralizing bacteria. Initially, a complete PNP biodegradation pathway from Pseudomonas sp. strain WBC-3 was introduced into the genome of a biosafety and soil-dwelling bacterium Pseudomonas putida KT2440. Subsequently, five strong promoters were identified from P. putida KT2440 by transcriptome analysis and strength characterization, and each of the five promoters was independently inserted into upstream of the pnp operon in the KT2440 genome. Consequently, a P8 promoter-substituted mutant strain showed the highest PNP degradation rate and strong tolerance against high concentrations of PNP. Furthermore, when using P8 promoter to regulate the transcription of all PNP degradation genes pnpABCDEF, the complete and efficient PNP mineralization was demonstrated by stable isotope 13C-labeled PNP transformation assay. Additionally, the finally constructed KTU-P8pnp can be monitored using integrated GFP on chromosome. This strategy of a combination of pathway construction and promoter engineering should open new avenues for creating efficient degraders for bioremediation.


Assuntos
Pseudomonas putida , Biodegradação Ambiental , Humanos , Nitrofenóis , Regiões Promotoras Genéticas , Pseudomonas/genética , Pseudomonas putida/genética
14.
Sci Total Environ ; 809: 152190, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34890655

RESUMO

Compositional nature of relative abundance data in the current standard microbiome studies limits microbial dynamics interpretations and cross-sample comparisons. Here, we demonstrate the first rapid (1-h sequencing) method coupling Nanopore metagenomic sequencing with cellular spike-in to facilitate the absolute quantification and removal assessment of pathogens and antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs). Nanopore sequencing-based quantification results for both simple mock community and complex real environmental samples showed a high consistency with those from the widely-used Illumina and culture-based approaches. Implementing such method, we quantified 46 predominant putative pathogenic species, and 361 ARGs in three WWTP sample sets. Though high log removals of dominant pathogens (2.23 logs) and ARGs (1.98 logs) were achieved, complete removal of all pathogens and ARGs were not achieved. Noticeably, Mycobacterium spp., Clostridium_P perfringens, and Borrelia hermsii exhibited low removal, and 13 ARGs even increased in absolute abundance after the treatment. Our proposed approach manifested its profound ability in providing absolute quantitation information guiding wastewater-based epidemiological surveillance and quantitative risk assessment facilitating microbial hazards management.


Assuntos
Antibacterianos , Sequenciamento por Nanoporos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Genes Bacterianos , Águas Residuárias
15.
Microbiome ; 10(1): 16, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078531

RESUMO

BACKGROUND: Our interconnected world and the ability of bacteria to quickly swap antibiotic resistance genes (ARGs) make it particularly important to establish the epidemiological links of multidrug resistance (MDR) transfer between wastewater treatment plant (WWTP)- and human/animal-associated bacteria, under the One Health framework. However, evidence of ARGs exchange and potential factors that contribute to this transfer remain limited. RESULTS: Here, by combining culture-based population genomics and genetic comparisons with publicly available datasets, we reconstructed the complete genomes of 82 multidrug-resistant isolates from WWTPs and found that most WWTP-associated isolates were genetically distinct from their closest human/animal-associated relatives currently available in the public database. Even in the minority of lineages that were closely related, WWTP-associated isolates were characterized by quite different plasmid compositions. We identified a high diversity of circular plasmids (264 in total, of which 141 were potentially novel), which served as the main source of resistance, and showed potential horizontal transfer of ARG-bearing plasmids between WWTP- and humans/animal-associated bacteria. Notably, the potentially transferred ARGs and virulence factors (VFs) with different genetic backgrounds were closely associated with flanking insertion sequences (ISs), suggesting the importance of synergy between plasmids and ISs in mediating a multilayered hierarchical transfer of MDR and potentiating the emergence of MDR-hypervirulent clones. CONCLUSION: Our findings advance the current efforts to establish potential epidemiological links of MDR transmission between WWTP- and human/animal-associated bacteria. Plasmids play an important role in mediating the transfer of ARGs and the IS-associated ARGs that are carried by conjugative plasmids should be prioritized to tackle the spread of resistance. Video Abstract.


Assuntos
Genômica , Purificação da Água , Animais , Antibacterianos/farmacologia , Bactérias/genética , Humanos , Plasmídeos/genética
16.
Water Res ; 226: 119282, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332295

RESUMO

Wastewater treatment plant (WWTP) effluent discharge could induce the resistome enrichment in the receiving water environments. However, because of the general lack of a robust antibiotic-resistant bacteria (ARB) identification method, the driving mechanism for resistome accumulation in receiving environment is unclear. Here, we took advantage of the enhanced ARBs recognition by nanopore long reads to distinguish the indigenous ARBs and the accumulation of WWTP-borne ARBs in the receiving water body of a domestic WWTP. A bioinformatic framework (named ARGpore2: https://github.com/sustc-xylab/ARGpore2) was constructed and evaluate to facilitate antibiotic resistance genes (ARGs) and ARBs identification in nanopore reads. ARGs identification by ARGpore2 showed comparable precision and recall to that of the commonly adopt BLASTP-based method, whereas the spectrum of ARBs doubled that of the assembled Illumina dataset. Totally, we identified 33 ARBs genera carrying 65 ARG subtypes in the receiving seawater, whose concentration was in general 10 times higher than clean seawater's. Notably we report a primary resistome intrusion caused by the revival of residual microbes survived from disinfection treatment. These WWTP-borne ARBs, including several animal/human enteric pathogens, contributed up to 85% of the receiving water resistome. Plasmids and class 1 integrons were reckoned as major vehicles facilitating the persistence and dissemination of ARGs. Moreover, our work demonstrated the importance of extensive carrier identification in determining the driving force of multifactor coupled resistome booming in complicated environmental conditions, thereby paving the way for establishing priority for effective ARGs mitigation strategies.


Assuntos
Nanoporos , Águas Residuárias , Animais , Humanos , Antibacterianos/farmacologia , Bactérias/genética , Genes Bacterianos , Metagenômica/métodos , Águas Residuárias/microbiologia , Água
17.
RSC Adv ; 12(49): 32027-32034, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36415548

RESUMO

Ferroelectric oxides with large bandgaps have restricted applications in photovoltaic and photocatalytic fields. Based on recent experiments with the ferroelectric compound, LiSbO3, the stability and optoelectronic properties of a new ferroelectric compound, namely Li2SbBiO6, are investigated in this study. The calculated results demonstrate that Li2SbBiO6 satisfies the stability conditions of the elastic coefficients and phonon dynamics. Li2SbBiO6 maintains the ferroelectric polarization strength of LiSbO3 and significantly reduces the bandgap, and thus has been explored for applications in photovoltaic and photocatalytic fields. Li2SbBiO6 is a new potential ferroelectric oxide for harvesting visible light owing to its suitable bandgap and a large hole-electron effective mass ratio.

18.
Oncotarget ; 13: 876-889, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875611

RESUMO

Cancer immunotherapy has significantly improved patient survival. Yet, half of patients do not respond to immunotherapy. Gut microbiomes have been linked to clinical responsiveness of melanoma patients on immunotherapies; however, different taxa have been associated with response status with implicated taxa inconsistent between studies. We used a tumor-agnostic approach to find common gut microbiome features of response among immunotherapy patients with different advanced stage cancers. A combined meta-analysis of 16S rRNA gene sequencing data from our mixed tumor cohort and three published immunotherapy gut microbiome datasets from different melanoma patient cohorts found certain gut bacterial taxa correlated with immunotherapy response status regardless of tumor type. Using multivariate selbal analysis, we identified two separate groups of bacterial genera associated with responders versus non-responders. Statistical models of gut microbiome community features showed robust prediction accuracy of immunotherapy response in amplicon sequencing datasets and in cross-sequencing platform validation with shotgun metagenomic datasets. Results suggest baseline gut microbiome features may be predictive of clinical outcomes in oncology patients on immunotherapies, and some of these features may be generalizable across different tumor types, patient cohorts, and sequencing platforms. Findings demonstrate how machine learning models can reveal microbiome-immunotherapy interactions that may ultimately improve cancer patient outcomes.


Assuntos
Microbioma Gastrointestinal , Melanoma , Bactérias/genética , Microbioma Gastrointestinal/genética , Humanos , Imunoterapia , Aprendizado de Máquina , Melanoma/terapia , RNA Ribossômico 16S/genética
19.
Sci Total Environ ; 787: 147611, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34000537

RESUMO

Class 1 integrons (CL1s) are one of the major contributors to the horizontal transfer of antibiotic resistance genes (ARGs). However, our knowledge of CL1 in the environment is still very limited due to the limitations of the current PCR primers and the sequencing methods adopted. This study developed a new primer coupled with PacBio sequencing to investigate the underrepresented diversity of CL1s in a mixed environmental sample (i.e. activated sludge from wastewater treatment plant and pig feces from animal farm). The new primer successfully uncovered 20 extra ARGs subtypes and 57% (422/739) more unique integron array structures than the previous primers. Compared to the whole genome database, CL1s revealed in the environment in this study were of much greater diversity, having 93% (900/967) novel array structures. Antibiotic resistance is the predominant function (78.3% genes) carried by CL1, and a vast majority (98.6% genes) of them confer resistance to aminoglycoside, beta-lactam, trimethoprim, or chloramphenicol. Additionally, 78.5% unique CL1 arrays carried more than one ARGs, and 25.9% of them carried ARGs of clinical relevance with high transferability potential posing threat to the general public. Our results indicated the importance of CL1s in the spread of ARGs. Overall, combining PacBio sequencing with the new primer designed in this study largely broadened our knowledge of CL1s in the environment and their significance in the environmental proliferation of ARGs.


Assuntos
Integrons , Águas Residuárias , Animais , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Integrons/genética , Esgotos , Suínos
20.
Sci Total Environ ; 761: 143239, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33158512

RESUMO

In this work, we developed an efficient pathway construction strategy, consisting of DNA assembler-assisted pathway assembly and counterselection system-based chromosomal integration, for the rapid and efficient integration of synthetic biodegradation pathways into the chromosome of Pseudomonas putida KT2440. Using this strategy, we created a novel degrader capable of complete mineralization of γ-hexachlorocyclohexane (γ-HCH) and 1,2,3-trichloropropane (TCP) by integrating γ-HCH and TCP biodegradation pathways into the chromosome of P. putida KT2440. Furthermore, the chromosomal integration efficiencies of γ-HCH and TCP biodegradation pathways were improved to 50% and 41.6% in P. putida KT2440, respectively, by the inactivation of a type I DNA restriction-modification system. The currently developed pathway construction strategy coupled with the mutant KTUΔhsdRMS will facilitate implantation of heterologous catabolic pathways into the chromosome for rapid evolution of the biodegradation capacity of P. putida. More importantly, the successful removal of γ-HCH (10 mg/kg soil) and TCP (0.2 mM) from soil and wastewater within 14 days, respectively, highlighted the potential of the novel degrader for in situ bioremediation of γ-HCH- and TCP-contaminated sites. Moreover, chromosomal integration of gfp made the degrader to be monitored easily during bioremediation. In the future, this strategy can be expanded to a broad range of bacterial species for widespread applications in bioremediation.


Assuntos
Pseudomonas putida , Biodegradação Ambiental , Hexaclorocicloexano , Pseudomonas putida/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa