RESUMO
Accurate and reliable quantification of organic acids with carboxylic acid functional groups in complex biological samples remains a major analytical challenge in clinical chemistry. Issues such as spontaneous decarboxylation during ionization, poor chromatographic resolution, and retention on a reverse-phase column hinder sensitivity, specificity, and reproducibility in multiple-reaction monitoring (MRM)-based LC-MS assays. We report a targeted metabolomics method using phenylenediamine derivatization for quantifying carboxylic acid-containing metabolites (CCMs). This method achieves accurate and sensitive quantification in various biological matrices, with recovery rates from 90% to 105% and CVs ≤ 10%. It shows linearity from 0.1 ng/mL to 10 µg/mL with linear regression coefficients of 0.99 and LODs as low as 0.01 ng/mL. The library included a wide variety of structurally variant CCMs such as amino acids/conjugates, short- to medium-chain organic acids, di/tri-carboxylic acids/conjugates, fatty acids, and some ring-containing CCMs. Comparing CCM profiles of pancreatic cancer cells to normal pancreatic cells identified potential biomarkers and their correlation with key metabolic pathways. This method enables sensitive, specific, and high-throughput quantification of CCMs from small samples, supporting a wide range of applications in basic, clinical, and translational research.
Assuntos
Ácidos Carboxílicos , Metabolômica , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/metabolismo , Metabolômica/métodos , Ácidos Carboxílicos/metabolismo , Ácidos Carboxílicos/análise , Cromatografia Líquida/métodos , Linhagem Celular Tumoral , Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Espectrometria de Massa com Cromatografia LíquidaRESUMO
In the last decade, geopolitical instability across the globe has increased the risk of a large-scale radiological event, when radiation biomarkers would be needed for an effective triage of an irradiated population. Ionizing radiation elicits a complex response in the proteome, genome, and metabolome and hence can be leveraged as rapid and sensitive indicators of irradiation-induced damage. We analyzed the plasma of total-body irradiated (TBI) leukemia patients (n = 24) and nonhuman primates (NHPs; n = 10) before and 24 h after irradiation, and we performed a global metabolomic study aiming to provide plasma metabolites as candidate radiation biomarkers for biological dosimetry. Peripheral blood samples were collected according to the appropriate ethical approvals, and metabolites were extracted and analyzed by liquid chromatography mass spectrometry. We identified an array of metabolites significantly altered by irradiation, including bilirubin, cholesterol, and 18-hydroxycorticosterone, which were detected in leukemia patients and NHPs. Pathway analysis showed overlapping perturbations in steroidogenesis, porphyrin metabolism, and steroid hormone biosynthesis and metabolism. Additionally, we observed dysregulation in bile acid biosynthesis and tyrosine metabolism in the TBI patient cohort. This investigation is, to our best knowledge, among the first to provide valuable insights into a comparison between human and NHP irradiation models. The findings from this study could be leveraged for translational biological dosimetry.
Assuntos
Metaboloma , Irradiação Corporal Total , Animais , Humanos , Masculino , Feminino , Adulto , Biomarcadores/sangue , Pessoa de Meia-Idade , Leucemia/sangue , Leucemia/metabolismo , Macaca mulatta , Radiação Ionizante , Metabolômica/métodosRESUMO
There are currently four radiation medical countermeasures that have been approved by the United States Food and Drug Administration to mitigate hematopoietic acute radiation syndrome, all of which are repurposed radiomitigators. The evaluation of additional candidate drugs that may also be helpful for use during a radiological/nuclear emergency is ongoing. A chlorobenzyl sulfone derivative (organosulfur compound) known as Ex-Rad, or ON01210, is one such candidate medical countermeasure, being a novel, small-molecule kinase inhibitor that has demonstrated efficacy in the murine model. In this study, nonhuman primates exposed to ionizing radiation were subsequently administered Ex-Rad as two treatment schedules (Ex-Rad I administered 24 and 36 h post-irradiation, and Ex-Rad II administered 48 and 60 h post-irradiation) and the proteomic profiles of serum using a global molecular profiling approach were assessed. We observed that administration of Ex-Rad post-irradiation is capable of mitigating radiation-induced perturbations in protein abundance, particularly in restoring protein homeostasis, immune response, and mitigating hematopoietic damage, at least in part after acute exposure. Taken together, restoration of functionally significant pathway perturbations may serve to protect damage to vital organs and provide long-term survival benefits to the afflicted population.
Assuntos
Contramedidas Médicas , Protetores contra Radiação , Estados Unidos , Animais , Camundongos , Proteômica , Protetores contra Radiação/farmacologia , PrimatasRESUMO
BACKGROUND: Urinary extracellular vesicles (EVs) are a source of biomarkers with broad potential applications across clinical research, including monitoring radiation exposure. A key limitation to their implementation is minimal standardization in EV isolation and analytical methods. Further, most urinary EV isolation protocols necessitate large volumes of sample. This study aimed to compare and optimize isolation and analytical methods for EVs from small volumes of urine. METHODS: 3 EV isolation methods were compared: ultracentrifugation, magnetic bead-based, and size-exclusion chromatography from 0.5 mL or 1 mL of rat and human urine. EV yield and mass spectrometry signals (Q-ToF and Triple Quad) were evaluated from each method. Metabolomic profiling was performed on EVs isolated from the urine of rats exposed to ionizing radiation 1-, 14-, 30- or 90-days post-exposure, and human urine from patients receiving thoracic radiotherapy for the treatment of lung cancer pre- and post-treatment. RESULTS: Size-exclusion chromatography is the preferred method for EV isolation from 0.5 mL of urine. Mass spectrometry-based metabolomic analyses of EV cargo identified biochemical changes induced by radiation, including altered nucleotide, folate, and lipid metabolism. We have provided standard operating procedures for implementation of these methods in other laboratories. CONCLUSIONS: We demonstrate that EVs can be isolated from small volumes of urine and analytically investigated for their biochemical contents to detect radiation induced metabolomic changes. These findings lay a groundwork for future development of methods to monitor response to radiotherapy and can be extended to an array of molecular phenotyping studies aimed at characterizing EV cargo.
Assuntos
Vesículas Extracelulares , Exposição à Radiação , Animais , Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Espectrometria de Massas , Ratos , UltracentrifugaçãoRESUMO
Patients presenting with prostate cancers undergo clinical staging evaluations to determine the extent of disease to guide therapeutic recommendations. Management options may include watchful waiting, surgery, or radiation therapy. Thus, initial risk stratification of prostate cancer patients is important for achieving optimal therapeutic results or cancer cure and preservation of quality of life. Predictive biomarkers for risks of complications or late effects of treatment are needed to inform clinical decisions for treatment selection. Here, we analyzed pre-treatment plasma metabolites in a cohort of prostate cancer patients (N = 99) treated with Stereotactic Body Radiation Therapy (SBRT) at Medstar-Georgetown University Hospital in a longitudinal, quality-of-life study to determine if individuals experiencing radiation toxicities can be identified by a molecular profile in plasma prior to treatment. We used a multiple reaction mass spectrometry-based molecular phenotyping of clinically annotated plasma samples in a retrospective outcome analysis to identify candidate biomarker panels correlating with adverse clinical outcomes following radiation therapy. We describe the discovery of candidate biomarkers, based on small molecule metabolite panels, showing high correlations (AUCs ≥ 95%) with radiation toxicities, suitable for validation studies in an expanded cohort of patients.
Assuntos
Biomarcadores , Neoplasias da Próstata , Lesões por Radiação , Radiocirurgia , Biomarcadores/sangue , Humanos , Estudos Longitudinais , Masculino , Neoplasias da Próstata/radioterapia , Qualidade de Vida , Lesões por Radiação/sangue , Radiocirurgia/efeitos adversos , Estudos RetrospectivosRESUMO
Genistein is a naturally occurring phytoestrogen isoflavone and is the active drug ingredient in BIO 300, a radiation countermeasure under advanced development for acute radiation syndrome (H-ARS) and for the delayed effects of acute radiation exposure (DEARE). Here we have assessed the pharmacokinetics (PK) and safety of BIO 300 in the nonhuman primate (NHP). In addition, we analyzed serum samples from animals receiving a single dose of BIO 300 for global metabolomic changes using ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight mass spectrometry (QTOF-MS). We present a comparison of how either intramuscularly (im) or orally (po) administered BIO 300 changed the metabolomic profile. We observed transient alterations in phenylalanine, tyrosine, glycerophosphocholine, and glycerophosphoserine which reverted back to near-normal levels 7 days after drug administration. We found a significant overlap in the metabolite profile changes induced by each route of administration; with the po route showing fewer metabolic alterations. Taken together, our results suggest that the administration of BIO 300 results in metabolic shifts that could provide an overall advantage to combat radiation injury. This initial assessment also highlights the utility of metabolomics and lipidomics to determine the underlying physiological mechanisms involved in the radioprotective efficacy of BIO 300.
Assuntos
Genisteína/administração & dosagem , Genisteína/farmacocinética , Metaboloma/efeitos dos fármacos , Nanopartículas/administração & dosagem , Suspensões/administração & dosagem , Suspensões/farmacocinética , Síndrome Aguda da Radiação/tratamento farmacológico , Síndrome Aguda da Radiação/metabolismo , Animais , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Genisteína/efeitos adversos , Macaca mulatta , Masculino , Metabolômica/métodos , Nanopartículas/efeitos adversos , Nanopartículas/metabolismo , Primatas , Suspensões/efeitos adversosRESUMO
Exposure to ionizing radiation induces a complex cascade of systemic and tissue-specific responses that lead to functional impairment over time in the surviving population. However, due to the lack of predictive biomarkers of tissue injury, current methods for the management of survivors of radiation exposure episodes involve monitoring of individuals over time for the development of adverse clinical symptoms and death. Herein, we report on changes in metabolomic and lipidomic profiles in multiple tissues of nonhuman primates (NHPs) that were exposed to a single dose of 7.2 Gy whole-body 60Co γ-radiation that either survived or succumbed to radiation toxicities over a 60-day period. This study involved the delineation of the radiation effects in the liver, kidney, jejunum, heart, lung, and spleen. We found robust metabolic changes in the kidney and liver and modest changes in other tissue types at the 60-day time point in a cohort of NHPs. Remarkably, we found significant elevation of long-chain acylcarnitines in animals that were exposed to radiation across multiple tissue types underscoring the role of this class of metabolites as a generic indicator of radiation-induced normal tissue injury. These studies underscore the utility of a metabolomics approach for delineating anticipatory biomarkers of exposure to ionizing radiation.
Assuntos
Raios gama/efeitos adversos , Radiação Ionizante , Animais , Biomarcadores/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Técnicas In Vitro , Rim/efeitos dos fármacos , Rim/metabolismo , Lipidômica , Macaca mulatta , Masculino , Metabolômica/métodos , PrimatasRESUMO
The experimental pathophysiology of organophosphorus (OP) chemical exposure has been extensively reported. Here, we describe an altered fecal bacterial biota and urine metabolome following intoxication with soman, a lipophilic G class chemical warfare nerve agent. Nonanesthetized Sprague-Dawley male rats were subcutaneously administered soman at 0.8 (subseizurogenic) or 1.0 (seizurogenic) of the 50% lethal dose (LD50) and evaluated for signs of toxicity. Animals were stratified based on seizing activity to evaluate effects of soman exposure on fecal bacterial biota and urine metabolites. Soman exposure reshaped fecal bacterial biota by altering Facklamia, Rhizobium, Bilophila, Enterobacter, and Morganella genera of the Firmicutes and Proteobacteria phyla, some of which are known to hydrolyze OP chemicals. However, analogous changes were not observed in the bacterial biota of the ileum, which remained the same irrespective of dose or seizing status of animals after soman intoxication. However, at 75 days after soman exposure, the bacterial biota stabilized and no differences were observed between groups. Interestingly, in considering just the seizing status of animals, we found that the urine metabolomes were markedly different. Leukotriene C4, kynurenic acid, 5-hydroxyindoleacetic acid, norepinephrine, and aldosterone were excreted at much higher rates at 72 h in seizing animals, consistent with early multiorgan involvement during soman poisoning. These findings demonstrate the feasibility of using the dysbiosis of fecal bacterial biota in combination with urine metabolome alterations as forensic evidence for presymptomatic OP exposure temporally to enable administration of neuroprotective therapies of the future.IMPORTANCE The paucity of assays to determine physiologically relevant OP exposure presents an opportunity to explore the use of fecal bacteria as sentinels in combination with urine to assess changes in the exposed host. Recent advances in sequencing technologies and computational approaches have enabled researchers to survey large community-level changes of gut bacterial biota and metabolomic changes in various biospecimens. Here, we profiled changes in fecal bacterial biota and urine metabolome following a chemical warfare nerve agent exposure. The significance of this work is a proof of concept that the fecal bacterial biota and urine metabolites are two separate biospecimens rich in surrogate indicators suitable for monitoring OP exposure. The larger value of such an approach is that assays developed on the basis of these observations can be deployed in any setting with moderate clinical chemistry and microbiology capability. This can enable estimation of the affected radius as well as screening, triage, or ruling out of suspected cases of exposures in mass casualty scenarios, transportation accidents involving hazardous materials, refugee movements, humanitarian missions, and training settings when coupled to an established and validated decision tree with clinical features.
Assuntos
Bactérias/efeitos dos fármacos , Biota/efeitos dos fármacos , Fezes/microbiologia , Agentes Neurotóxicos/intoxicação , Convulsões/metabolismo , Soman/intoxicação , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Convulsões/etiologia , Convulsões/microbiologia , Convulsões/urina , Soman/administração & dosagem , Urina/químicaRESUMO
Exposure to ionizing radiation induces a cascade of molecular events that ultimately impact endogenous metabolism. Qualitative and quantitative characterization of metabolomic profiles is a pragmatic approach to studying the risks of radiation exposure since it provides a phenotypic readout. Studies were conducted in irradiated nonhuman primates (NHP) to investigate metabolic changes in plasma and plasma-derived exosomes. Specifically, rhesus macaques (Macaca mulatta) were exposed to cobalt-60 gamma-radiation and plasma samples were collected prior to and after exposure to 5.8 Gy or 6.5 Gy radiation. Exosomes were isolated using ultracentrifugation and analyzed by untargeted profiling via ultra-performance liquid chromatography mass spectrometry (UPLC-MS) based metabolomic and lipidomic analyses, with the goal of identifying a molecular signature of irradiation. The enrichment of an exosomal fraction was confirmed using quantitative ELISA. Plasma profiling showed markers of dyslipidemia, inflammation and oxidative stress post-irradiation. Exosomal profiling, on the other hand, enabled detection and identification of low abundance metabolites that comprise exosomal cargo which would otherwise get obscured with plasma profiling. We discovered enrichment of different classes of metabolites including N-acyl-amino acids, Fatty Acid ester of Hydroxyl Fatty Acids (FAHFA's), glycolipids and triglycerides as compared to the plasma metabolome composition with implications in mediation of systemic response to radiation induced stress signaling.
Assuntos
Biomarcadores/sangue , Exossomos/metabolismo , Radiação Ionizante , Animais , Análise Discriminante , Feminino , Análise dos Mínimos Quadrados , Metabolismo dos Lipídeos/efeitos da radiação , Macaca mulatta , Masculino , MetabolômicaRESUMO
Smoking-related biomarkers for lung cancer and other diseases are needed to enhance early detection strategies and to provide a science base for tobacco product regulation. An untargeted metabolomics approach by ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UHPLC-Q-TOF MS) totaling 957 assays was used in a novel experimental design where 105 current smokers smoked two cigarettes 1 h apart. Blood was collected immediately before and after each cigarette allowing for within-subject replication. Dynamic changes of the metabolomic profiles from smokers' four blood samples were observed and biomarkers affected by cigarette smoking were identified. Thirty-one metabolites were definitively shown to be affected by acute effect of cigarette smoking, uniquely including menthol-glucuronide, the reduction of glutamate, oleamide, and 13 glycerophospholipids. This first time identification of a menthol metabolite in smokers' blood serves as proof-of-principle for using metabolomics to identify new tobacco-exposure biomarkers, and also provides new opportunities in studying menthol-containing tobacco products in humans. Gender and race differences also were observed. Network analysis revealed 12 molecules involved in cancer, notably inhibition of cAMP. These novel tobacco-related biomarkers provide new insights to the effects of smoking which may be important in carcinogenesis but not previously linked with tobacco-related diseases. © 2016 Wiley Periodicals, Inc.
Assuntos
Glucuronatos/sangue , Mentol/análogos & derivados , Metaboloma , Fumar/sangue , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Biomarcadores/metabolismo , Feminino , Glucuronatos/metabolismo , Humanos , Masculino , Mentol/sangue , Mentol/metabolismo , Metabolômica , Pessoa de Meia-Idade , Fumar/metabolismo , Adulto JovemRESUMO
The development of radiation countermeasures for acute radiation syndrome (ARS) has been underway for the past six decades, leading to the identification of multiple classes of radiation countermeasures. However, to date, only two growth factors (Neupogen and Neulasta) have been approved by the United States Food and Drug Administration (US FDA) for the mitigation of hematopoietic acute radiation syndrome (H-ARS). No radioprotector for ARS has been approved by the FDA yet. Gamma-tocotrienol (GT3) has been demonstrated to have radioprotective efficacy in murine as well as nonhuman primate (NHP) models. Currently, GT3 is under advanced development as a radioprotector that can be administered prior to radiation exposure. We are studying this agent for its safety profile and efficacy using the NHP model. In this study, we analyzed global metabolomic and lipidomic changes using ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight mass spectrometry (QTOF-MS) in serum samples of NHPs administered GT3. Our study, using 12 NHPs, demonstrates that alterations in metabolites manifest only 24 h after GT3 administration. Furthermore, metabolic changes are associated with transient increase in the bioavailability of antioxidants, including lactic acid and cholic acid and anti-inflammatory metabolites 3 deoxyvitamin D3, and docosahexaenoic acid. Taken together, our results show that the administration of GT3 to NHPs causes metabolic shifts that would provide an overall advantage to combat radiation injury. This initial assessment also highlights the utility of metabolomics and lipidomics to determine the underlying physiological mechanisms involved in the radioprotective efficacy of GT3.
Assuntos
Cromanos/farmacocinética , Metabolismo dos Lipídeos/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Protetores contra Radiação/farmacocinética , Vitamina E/análogos & derivados , Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/prevenção & controle , Animais , Antioxidantes/metabolismo , Disponibilidade Biológica , Colecalciferol/análogos & derivados , Colecalciferol/sangue , Ácido Cólico/sangue , Cromanos/sangue , Ácidos Docosa-Hexaenoicos/sangue , Feminino , Humanos , Ácido Láctico/sangue , Macaca mulatta , Masculino , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Vitamina E/sangue , Vitamina E/farmacocinéticaRESUMO
Diabetes mellitus in early pregnancy causes birth defects by disturbing metabolic homeostasis and increasing programmed cell death in the embryo. Over-activation of phospholipase Cß3 and γ1 suggests disturbed phospholipid metabolism, which is an important in regulation of cell signaling and activity. Metabolomic examinations reveal significant changes in the profile of phospholipid metabolism. Among the metabolites, levels of phosphatidylinositol bisphosphate (PIP2) are increased. PIP2 effector PTEN (phosphatase and tensin homolog deleted on chromosome 10) is activated. Activation of protein kinase Bα (PKBα, or AKT1) and mTOR (mechanistic target of rapamycin) is decreased. Inhibition of PLCs and PTEN suppresses over-generation of reactive oxygen species and inhibition of PLCs prevents fragmentation of mitochondria in neural stem cells cultured in high glucose. These observations suggest that maternal hyperglycemia disrupts phospholipid metabolism, leading to perturbation of mitochondrial dynamics and redox homeostasis and suppression of the PKB-mTOR cell survival signaling in the embryos.
Assuntos
Diabetes Gestacional/metabolismo , Diabetes Gestacional/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Defeitos do Tubo Neural/patologia , Fosfolipídeos/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Defeitos do Tubo Neural/metabolismo , Gravidez , PrenhezRESUMO
Activation of STAT3 in cancers leads to gene expression promoting cell proliferation and resistance to apoptosis, as well as tumor angiogenesis, invasion, and migration. In the characterization of effects of ST3-H2A2, a selective inhibitor of the STAT3 N-terminal domain (ND), we observed that the compound induced apoptotic death in cancer cells associated with robust activation of proapoptotic genes. Using ChIP and tiling human promoter arrays, we found that activation of gene expression in response to ST3-H2A2 is accompanied by altered STAT3 chromatin binding. Using inhibitors of STAT3 phosphorylation and a dominant-negative STAT3 mutant, we found that the unphosphorylated form of STAT3 binds to regulatory regions of proapoptotic genes and prevents their expression in tumor cells but not normal cells. siRNA knockdown confirmed the effects of ST3-HA2A on gene expression and chromatin binding to be STAT3 dependent. The STAT3-binding region of the C/EBP-homologous protein (CHOP) promoter was found to be localized in DNaseI hypersensitive site of chromatin in cancer cells but not in nontransformed cells, suggesting that STAT3 binding and suppressive action can be chromatin structure dependent. These data demonstrate a suppressive role for the STAT3 ND in the regulation of proapoptotic gene expression in cancer cells, providing further support for targeting STAT3 ND for cancer therapy.
Assuntos
Apoptose/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatina/metabolismo , Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Masculino , Fosforilação , Regiões Promotoras Genéticas , Neoplasias da Próstata/patologia , Estrutura Terciária de Proteína , RNA Interferente Pequeno/genética , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genéticaRESUMO
The discovery and development of small molecules that antagonize neuronal nicotinic acetylcholine receptors may provide new ligands for evaluation in models of depression or addiction. We discovered a small molecule, VMY-2-95, a nAChR ligand with picomolar affinity and high selectivity for α4ß2 receptors. In this study, we investigated its preclinical profile in regards to solubility, lipophilicity, metabolic stability, intestinal permeability, bioavailability, and drug delivery to the rat brain. Metabolic stability of VMY-2-95·2HCl was monitored on human liver microsomes, and specific activity of VMY-2-95·2HCl on substrate metabolism by CYP1A2, 2C9, 2C19, 2D6, and 3A4 was tested in a high-throughput manner. The intestinal transport of VMY-2-95·2HCl was studied through Caco-2 cell monolayer permeability. VMY-2-95·2HCl was soluble in water and chemically stable, and the apparent partition coefficient was 0.682. VMY-2-95·2HCl showed significant inhibition of CYP2C9 and 2C19, but weak or no effect on 1A2, 2D6, and 3A4. The Caco-2 cell model studies revealed that VMY-2-95·2HCl was highly permeable with efflux ratio of 1.11. VMY-2-95·2HCl achieved a maximum serum concentration of 0.56 mg/mL at 0.9 h and was orally available with a half-life of â¼9 h. Furthermore, VMY-2-95·2HCl was detected in the rat brain after 3 mg/kg oral administration and achieved a maximal brain tissue concentration of 2.3 µg/g within 60 min. Overall, the results demonstrate that VMY-2-95·2HCl has good drug like properties and can penetrate the blood-brain barrier with oral administration.
Assuntos
Azetidinas/metabolismo , Microssomos Hepáticos/metabolismo , Piridinas/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Células CACO-2 , Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450/metabolismo , Estabilidade de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Ligantes , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
Although radiation-induced tissue-specific injury is well documented, the underlying molecular changes resulting in organ dysfunction and the consequences thereof on overall metabolism and physiology have not been elucidated. We previously reported the generation and characterization of a transgenic mouse strain that ubiquitously overexpresses Gfrp (GTPH-1 feedback regulatory protein) and exhibits higher oxidative stress, which is a possible result of decreased tetrahydrobiopterin (BH4) bioavailability. In this study, we report genotype-dependent changes in the metabolic profiles of liver tissue after exposure to nonlethal doses of ionizing radiation. Using a combination of untargeted and targeted quantitative mass spectrometry, we report significant accumulation of metabolites associated with oxidative stress, as well as the dysregulation of lipid metabolism in transgenic mice after radiation exposure. The radiation stress seems to exacerbate lipid peroxidation and also results in higher expression of genes that facilitate liver fibrosis, in a manner that is dependent on the genetic background and post-irradiation time interval. These findings suggest the significance of Gfrp in regulating redox homeostasis in response to stress induced by ionizing radiation affecting overall physiology.
Assuntos
Proteínas de Transporte/genética , Cirrose Hepática/metabolismo , Fígado/metabolismo , Metaboloma , Estresse Oxidativo , Lesões Experimentais por Radiação/metabolismo , Animais , Proteínas de Transporte/biossíntese , Feminino , Metabolismo dos Lipídeos/efeitos da radiação , Peroxidação de Lipídeos , Fígado/efeitos da radiação , Cirrose Hepática/etiologia , Masculino , Metabolômica , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Radiação Ionizante , Transdução de SinaisRESUMO
The increasing number of afflicted individuals with late-onset Alzheimer's disease (AD) poses significant emotional and financial burden on the world's population. Therapeutics designed to treat symptoms or alter the disease course have failed to make an impact, despite substantial investments by governments, pharmaceutical industry, and private donors. These failures in treatment efficacy have led many to believe that symptomatic disease, including both mild cognitive impairment (MCI) and AD, may be refractory to therapeutic intervention. The recent focus on biomarkers for defining the preclinical state of MCI/AD is in the hope of defining a therapeutic window in which the neural substrate remains responsive to treatment. The ability of biomarkers to adequately define the at-risk state may ultimately allow novel or repurposed therapeutic agents to finally achieve the disease-modifying status for AD. In this review, we examine current preclinical AD biomarkers and suggest how to generalize their use going forward.
Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Animais , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Sintomas ProdrômicosRESUMO
The identification and validation of radiation biomarkers is critical for assessing the radiation dose received in exposed individuals and for developing radiation medical countermeasures that can be used to treat acute radiation syndrome (ARS). Additionally, a fundamental understanding of the effects of radiation injury could further aid in the identification and development of therapeutic targets for mitigating radiation damage. In this study, blood samples were collected from fourteen male nonhuman primates (NHPs) that were exposed to 7.2 Gy ionizing radiation at various time points (seven days prior to irradiation; 1, 13, and 25 days post-irradiation; and immediately prior to the euthanasia of moribund (preterminal) animals). Plasma was isolated from these samples and was analyzed using a liquid chromatography tandem mass spectrometry approach in an effort to determine the effects of radiation on plasma proteomic profiles. The primary objective was to determine if the radiation-induced expression of specific proteins could serve as an early predictor for health decline leading to a preterminal phenotype. Our results suggest that radiation induced a complex temporal response in which some features exhibit upregulation while others trend downward. These statistically significantly altered features varied from pre-irradiation levels by as much as tenfold. Specifically, we found the expression of integrin alpha and thrombospondin correlated in peripheral blood with the preterminal stage. The differential expression of these proteins implicates dysregulation of biological processes such as hemostasis, inflammation, and immune response that could be leveraged for mitigating radiation-induced adverse effects.
Assuntos
Raios gama , Macaca mulatta , Proteômica , Animais , Raios gama/efeitos adversos , Masculino , Proteômica/métodos , Biomarcadores/sangue , Irradiação Corporal Total/efeitos adversos , Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/etiologia , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo , Proteoma/análise , Proteoma/metabolismoRESUMO
A complex cascade of systemic and tissue-specific responses induced by exposure to ionizing radiation can lead to functional impairment over time in the surviving population. Current methods for management of survivors of unintentional radiation exposure episodes rely on monitoring individuals over time for the development of adverse clinical symptoms due to the lack of predictive biomarkers for tissue injury. In this study, we report on changes in metabolomic and lipidomic profiles in multiple tissues of nonhuman primates (NHPs) that received either 4.0 Gy or 5.8 Gy total-body irradiation (TBI) of 60Co gamma rays, and 4.0 or 5.8 Gy partial-body irradiation (PBI) from LINAC-derived photons and were treated with a promising radiation countermeasure, gamma-tocotrienol (GT3). These include small molecule alterations that correlate with radiation effects in the jejunum, lung, kidney, and spleen of animals that either survived or succumbed to radiation toxicities over a 30-day period. Radiation-induced metabolic changes in tissues were observed in animals exposed to both doses and types of radiation, but were partially alleviated in GT3-treated and irradiated animals, with lung and spleen being most responsive. The majority of the pathways protected by GT3 treatment in these tissues were related to glucose metabolism, inflammation, and aldarate metabolism, suggesting GT3 may exert radioprotective effects in part by sparing these pathways from radiation-induced dysregulation. Taken together, the results of our study demonstrate that the prophylactic administration of GT3 results in metabolic and lipidomic shifts that likely provide an overall advantage against radiation injury. This investigation is among the first to highlight the use of a molecular phenotyping approach in a highly translatable NHP model of partial- and total-body irradiation to determine the underlying physiological mechanisms involved in the radioprotective efficacy of GT3.
Assuntos
Macaca mulatta , Metabolômica , Irradiação Corporal Total , Animais , Irradiação Corporal Total/efeitos adversos , Masculino , Metaboloma/efeitos da radiação , Vitamina E/metabolismo , Vitamina E/análogos & derivados , Protetores contra Radiação/farmacologia , Raios gama/efeitos adversos , CromanosRESUMO
Exposure to ionizing radiation induces cellular and molecular damage leading to a cascade of events resulting in tissue and organ injury. Our study strives to characterize and validate metabolomic changes in preterminal stage (immediately prior to death) samples collected from rhesus macaques lethally irradiated with one of two different doses of radiation. Peripheral blood samples were collected pre-exposure, post-exposure, and at the preterminal stage of nonhuman primates (NHPs that did not survive exposure with 7.2 Gy or 7.6 Gy total-body radiation (LD60-80/60)). We analyzed global metabolomic alterations using ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight mass spectrometry (QTOF-MS) in serum samples collected at various timepoints in relation to radiation exposure. The goal of this study was to validate the metabolic shifts present in samples collected just prior to death, which were reported earlier in a preliminary study with a limited number of samples and a single dose of radiation. Here, we demonstrate that radiation exposure induced significant time-dependent metabolic alterations compared with pre-exposure samples. We observed significant metabolite dysregulation in animals exposed to 7.6 Gy compared to 7.2 Gy. Greater metabolic disruption was observed in the preterminal groups than all of the other post-irradiation timepoints in both cohorts. Metabolomic shifts in these preterminal groups also revealed consistent disturbances in sphingolipid metabolism, steroid hormone biosynthesis, and glycerophospholipid metabolism pathways. Overall, the sphingolipid metabolism pathway appears to be representative of the preterminal phenotype, confirming the results of our preliminary study. These results offer important and novel insights for identification and validation of biomarkers for lethality, and such observations would be valuable for triage during a radiological/nuclear mass casualty scenario.
Assuntos
Raios gama , Macaca mulatta , Metabolômica , Irradiação Corporal Total , Animais , Raios gama/efeitos adversos , Metabolômica/métodos , Metaboloma/efeitos da radiação , Masculino , Relação Dose-Resposta à Radiação , FemininoRESUMO
BBT-059, a long-acting PEGylated interleukin-11 (IL-11) analog that is believed to have hematopoietic promoting and anti-apoptotic properties, is being developed as a potential radiation medical countermeasure (MCM) for hematopoietic acute radiation syndrome (H-ARS). This agent has been shown to improve survival in lethally irradiated mice. To further evaluate the drug's toxicity and safety profile, 12 naïve nonhuman primates (NHPs, rhesus macaques) were administered one of three doses of BBT-059 subcutaneously and were monitored for the next 21 days. Blood samples were collected throughout the study to assess the pharmacokinetics (PK) and pharmacodynamics (PD) of the drug as well as its effects on complete blood counts, cytokines, vital signs, and to conduct metabolomic studies. No adverse effects were detected in any treatment group during the study. Short-term changes in metabolomic profiles were present in all groups treated with BBT-059 beginning immediately after drug administration and reverting to near normal levels by the end of the study period. Several pathways and metabolites, particularly those related to inflammation and steroid hormone biosynthesis, were activated by BBT-059 administration. Taken together, these observations suggest that BBT-059 has a good safety profile for further development as a radiation MCM for regulatory approval for human use.