RESUMO
Cytotoxicity is a critical property in determining the fate of a small molecule in the drug discovery pipeline. Cytotoxic compounds are identified and triaged in both target-based and cell-based phenotypic approaches due to their off-target toxicity or on-target and on-mechanism toxicity for oncology and neurodegenerative targets. It is critical that chemical-induced cytotoxicity be reliably predicted before drug candidates advance to the late stage of development, or more ideally, before compounds are synthesized. In this study, we assessed the cell-based cytotoxicity of nearly 10,000 compounds in NCATS annotated libraries against four 'normal' cell lines (HEK 293, NIH 3T3, CRL-7250 and HaCat) using CellTiter-Glo (CTG) technology and constructed highly predictive models to estimate cytotoxicity from chemical structures. There are 5,241 non-redundant compounds having unambiguous activities in the four different cell lines, among which 11.8% compounds exhibited cytotoxicity in two or more cell lines and are thus labelled cytotoxic. The support vector classification (SVC) models trained with 80% randomly selected molecules achieved the area under the receiver operating characteristic curve (AUC-ROC) of 0.88 on average for the remaining 20% compounds in the test sets in 10 repeating experiments. Application of under-sampling rebalancing method further improved the averaged AUC-ROC to 0.90. Analysis of structural features shared by cytotoxic compounds may offer medicinal chemists heuristic design ideas to eliminate undesirable cytotoxicity. The profiling of cytotoxicity of drug-like molecules with annotated primary mechanism of action (MOA) will inform on the roles played by different targets or pathways in cellular viability. The predictive models for cytotoxicity (accessible at https://tripod.nih.gov/web_adme/cytotox.html) provide the scientific community a fast yet reliable way to prioritize molecules with little or no cytotoxicity for downstream development.
Assuntos
Antineoplásicos/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Máquina de Vetores de SuporteRESUMO
The histone lysine methyltransferase nuclear receptor-binding SET domain protein 2 (NSD2, also known as WHSC1/MMSET) is an epigenetic modifier and is thought to play a driving role in oncogenesis. Both NSD2 overexpression and point mutations that increase its catalytic activity are associated with several human cancers. Although NSD2 is an attractive therapeutic target, no potent, selective, and bioactive small molecule inhibitors of NSD2 have been reported to date, possibly due to the challenges of developing high-throughput assays for NSD2. Here, to establish a platform for the discovery and development of selective NSD2 inhibitors, we optimized and implemented multiple assays. We performed quantitative high-throughput screening with full-length WT NSD2 and a nucleosome substrate against a diverse collection of bioactive small molecules comprising 16,251 compounds. We further interrogated 174 inhibitory compounds identified in the primary screen with orthogonal and counter assays and with activity assays based on the clinically relevant NSD2 variants E1099K and T1150A. We selected five confirmed inhibitors for follow-up, which included a radiolabeled validation assay, surface plasmon resonance studies, methyltransferase profiling, and histone methylation in cells. We found that all five NSD2 inhibitors bind the catalytic SET domain and one exhibited apparent activity in cells, validating the workflow and providing a template for identifying selective NSD2 inhibitors. In summary, we have established a robust discovery pipeline for identifying potent NSD2 inhibitors from small-molecule libraries.
Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Nucleossomos/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala/métodos , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Nucleossomos/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Bibliotecas de Moléculas Pequenas/químicaRESUMO
Proliferating cells, including cancer cells, obtain serine both exogenously and via the metabolism of glucose. By catalyzing the first, rate-limiting step in the synthesis of serine from glucose, phosphoglycerate dehydrogenase (PHGDH) controls flux through the biosynthetic pathway for this important amino acid and represents a putative target in oncology. To discover inhibitors of PHGDH, a coupled biochemical assay was developed and optimized to enable high-throughput screening for inhibitors of human PHGDH. Feedback inhibition was minimized by coupling PHGDH activity to two downstream enzymes (PSAT1 and PSPH), providing a marked improvement in enzymatic turnover. Further coupling of NADH to a diaphorase/resazurin system enabled a red-shifted detection readout, minimizing interference due to compound autofluorescence. With this protocol, over 400,000 small molecules were screened for PHGDH inhibition, and following hit validation and triage work, a piperazine-1-thiourea was identified. Following rounds of medicinal chemistry and SAR exploration, two probes (NCT-502 and NCT-503) were identified. These molecules demonstrated improved target activity and encouraging ADME properties, enabling in vitro assessment of the biological importance of PHGDH, and its role in the fate of serine in PHGDH-dependent cancer cells. This manuscript reports the assay development and medicinal chemistry leading to the development of NCT-502 and -503 reported in Pacold et al. (2016).
Assuntos
Inibidores Enzimáticos/farmacologia , Fosfoglicerato Desidrogenase/antagonistas & inibidores , Piperazinas/farmacologia , Tioureia/análogos & derivados , Tioureia/farmacologia , Relação Dose-Resposta a Droga , Descoberta de Drogas , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Humanos , Estrutura Molecular , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Piperazinas/síntese química , Piperazinas/química , Relação Estrutura-Atividade , Tioureia/síntese química , Tioureia/químicaRESUMO
Ferroptosis is defined as cell death triggered by iron-dependent lipid peroxidation that is preventable by antioxidant compounds such as ferrostatin-1. Endogenous suppressors of ferroptosis include FSP-1 and the selenoprotein GPX4, the latter of which directly enzymatically reduces lipid hydroperoxides. Small molecules that trigger ferroptosis include RSL3, ML162, and ML210; these compounds are often used in studies of ferroptosis and are generally considered as GPX4 inhibitors. Here, we found that RSL3 and ML162 completely lack capacity of inhibiting the enzymatic activity of recombinant selenoprotein GPX4. Surprisingly, these compounds were instead found to be efficient inhibitors of another selenoprotein, TXNRD1. Other known inhibitors of TXNRD1, including auranofin, TRi-1 and TRi-2, are also efficient inducers of cell death but that cell death could not be suppressed with ferrostatin-1. Our results collectively suggest that prior studies using RSL3 and ML162 may need to be reevaluated in the context of ferroptosis with regards to additional enzyme targets and mechanisms of action that may be involved.
Assuntos
Ferroptose , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Cicloexilaminas/farmacologia , Peroxidação de LipídeosRESUMO
Toxic metal contaminants present in food and water have widespread effects on health and disease. Chalcophiles, such as arsenic, cadmium, and mercury, show a high affinity to selenium and exposure to these metals could have a modulating effect on enzymes dependent on selenocysteine in their active sites. The aim of this study was to assess the influence of these metals on the activity of the selenoprotein glutathione peroxidase 1 (GPX1) in erythrocytes of 100 children residing in rural Bangladesh, where drinking water often contains arsenic. GPX1 expression, as measured using high-throughput immunoblotting, showed little correlation with GPX activity (rs = 0.02, p = 0.87) in blood samples. Toxic metals and selenium measured in erythrocytes using inductively coupled plasma mass spectrometry (ICP-MS) and C-reactive protein (CRP) measured in plasma, were all considered as effectors of this divergence in GPX enzymatic activity. Arsenic concentrations in erythrocytes were most influential for GPX1 activity (rs = -0.395, p < 0.0001), and CRP levels also negatively impacted GPX1 activity (rs = -0.443, p < 0.0001). These effects appear independent of each other as arsenic concentrations and CRP showed no correlation (rs = 0.124, p = 0.2204). Erythrocyte selenium, cadmium, and mercury did not show any correlation with GPX1 activity, nor with CRP or arsenic. Our findings suggest that childhood exposure to inorganic arsenic, as well as inflammation triggering the release of CRP, may negatively affect GPX1 activity in erythrocytes.
RESUMO
Selenoprotein glutathione peroxidases (GPX), like ubiquitously expressed GPX1 and the ferroptosis modulator GPX4, enact antioxidant activities by reducing hydroperoxides using glutathione. Overexpression of these enzymes is common in cancer and can be associated with the development of resistance to chemotherapy. GPX1 and GPX4 inhibitors have thus shown promise as anti-cancer agents, and targeting other GPX isoforms may prove equally beneficial. Existing inhibitors are often promiscuous, or modulate GPXs only indirectly, so novel direct inhibitors identified through screening against GPX1 and GPX4 could be valuable. Here, we developed optimized glutathione reductase (GR)-coupled GPX assays for the biochemical high-throughput screen (HTS) of almost 12,000 compounds with proposed mechanisms of action. Initial hits were triaged using a GR counter-screen, assessed for isoform specificity against an additional GPX isoform, GPX2, and were assessed for general selenocysteine-targeting activity using a thioredoxin reductase (TXNRD1) assay. Importantly, 70% of the GPX1 inhibitors identified in the primary screen, including several cephalosporin antibiotics, were found to also inhibit TXNRD1, while auranofin, previously known as a TXNRD1 inhibitor, also inhibited GPX1 (but not GPX4). Additionally, every GPX1 inhibitor identified (including omapatrilat, tenatoprazole, cefoxitin and ceftibuten) showed similar inhibitory activity against GPX2. Some compounds inhibiting GPX4 but not GPX1 or GPX2, also inhibited TXNRD1 (26%). Compounds only inhibiting GPX4 included pranlukast sodium hydrate, lusutrombopag, brilanestrant, simeprevir, grazoprevir (MK-5172), paritaprevir, navitoclax, venetoclax and VU0661013. Two compounds (metamizole sodium and isoniazid sodium methanesulfate) inhibited all three GPXs but not TXNRD1, while 2,3-dimercaptopropanesulfonate, PI4KIII beta inhibitor 3, SCE-2174 and cefotetan sodium inhibited all tested selenoproteins (but not GR). The detected overlaps in chemical space suggest that the counter screens introduced here should be imperative for identification of specific GPX inhibitors. With this approach, we could indeed identify novel GPX1/GPX2- or GPX4-specific inhibitors, thus presenting a validated pipeline for future identification of specific selenoprotein-targeting agents. Our study also identified GPX1/GPX2, GPX4 and/or TXNRD1 as targets for several previously developed pharmacologically active compounds.
Assuntos
Glutationa Peroxidase GPX1 , Neoplasias , Humanos , Glutationa , Glutationa Peroxidase GPX1/antagonistas & inibidores , SelenoproteínasRESUMO
BACKGROUND: Extremely rare progressive diseases like Sedaghatian-type Spondylometaphyseal Dysplasia (SSMD) can be neonatally lethal and therefore go undiagnosed or are difficult to treat. Recent sequencing efforts have linked this disease to mutations in GPX4, with consequences in the resulting enzyme, glutathione peroxidase 4. This offers potential diagnostic and therapeutic avenues for those suffering from this disease, though the steps toward these treatments is often convoluted, expensive, and time-consuming. MAIN BODY: The CureGPX4 organization was developed to promote awareness of GPX4-related diseases like SSMD, as well as support research that could lead to essential therapeutics for patients. We provide an overview of the 21 published SSMD cases and have compiled additional sequencing data for four previously unpublished individuals to illustrate the genetic component of SSMD, and the role of sequencing data in diagnosis. We outline in detail the steps CureGPX4 has taken to reach milestones of team creation, disease understanding, drug repurposing, and design of future studies. CONCLUSION: The primary aim of this review is to provide a roadmap for therapy development for rare, ultra-rare, and difficult to diagnose diseases, as well as increase awareness of the genetic component of SSMD. This work will offer a better understanding of GPx4-related diseases, and help guide researchers, clinicians, and patients interested in other rare diseases find a path towards treatments.
Assuntos
Osteocondrodisplasias , Doenças Raras , Humanos , Doenças Raras/genéticaRESUMO
Neomorphic mutations in isocitrate dehydrogenase 1 (IDH1) are oncogenic for a number of malignancies, primarily low-grade gliomas and acute myeloid leukemia. We report a medicinal chemistry campaign around a 7,7-dimethyl-7,8-dihydro-2H-1λ2-quinoline-2,5(6H)-dione screening hit against the R132H and R132C mutant forms of isocitrate dehydrogenase (IDH1). Systematic SAR efforts produced a series of potent pyrid-2-one mIDH1 inhibitors, including the atropisomer (+)-119 (NCATS-SM5637, NSC 791985). In an engineered mIDH1-U87-xenograft mouse model, after a single oral dose of 30 mg/kg, 16 h post dose, between 16 and 48 h, (+)-119 showed higher tumoral concentrations that corresponded to lower 2-HG concentrations, when compared with the approved drug AG-120 (ivosidenib).
Assuntos
Inibidores Enzimáticos/química , Isocitrato Desidrogenase/antagonistas & inibidores , Piridonas/química , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/uso terapêutico , Feminino , Glicina/análogos & derivados , Glicina/uso terapêutico , Meia-Vida , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Camundongos , Camundongos Nus , Microssomos Hepáticos/metabolismo , Mutagênese Sítio-Dirigida , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Piridinas/uso terapêutico , Piridonas/metabolismo , Piridonas/uso terapêutico , Ratos , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Cell-based phenotypic screening is a commonly used approach to discover biological pathways, novel drug targets, chemical probes, and high-quality hit-to-lead molecules. Many hits identified from high-throughput screening campaigns are ruled out through a series of follow-up potency, selectivity/specificity, and cytotoxicity assays. Prioritization of molecules with little or no cytotoxicity for downstream evaluation can influence the future direction of projects, so cytotoxicity profiling of screening libraries at an early stage is essential for increasing the likelihood of candidate success. In this study, we assessed the cell-based cytotoxicity of nearly 10,000 compounds in the National Institutes of Health, National Center for Advancing Translational Sciences annotated libraries and more than 100,000 compounds in a diversity library against four normal cell lines (HEK 293, NIH 3T3, CRL-7250, and HaCat) and one cancer cell line (KB 3-1, a HeLa subline). This large-scale library profiling was analyzed for overall screening outcomes, hit rates, pan-activity, and selectivity. For the annotated library, we also examined the primary targets and mechanistic pathways regularly associated with cell death. To our knowledge, this is the first study to use high-throughput screening to profile a large screening collection (>100,000 compounds) for cytotoxicity in both normal and cancer cell lines. The results generated here constitute a valuable resource for the scientific community and provide insight into the extent of cytotoxic compounds in screening libraries, allowing for the identification and avoidance of compounds with cytotoxicity during high-throughput screening campaigns.
Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios de Triagem em Larga Escala , Bibliotecas de Moléculas Pequenas , Antineoplásicos/química , Técnicas de Cultura de Células , Linhagem Celular , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Expressão Gênica , Genes Reporter , Ensaios de Triagem em Larga Escala/métodos , HumanosRESUMO
Quality control monitoring of cell lines utilized in biomedical research is of utmost importance and is critical for the reproducibility of data. Two key pitfalls in tissue culture are 1) cell line authenticity and 2) Mycoplasma contamination. As a collaborative research institute, the National Center for Advancing Translational Sciences (NCATS) receives cell lines from a range of commercial and academic sources, which are adapted for high-throughput screening. Here, we describe the implementation of routine NCATS-wide Mycoplasma testing and short tandem repeat (STR) testing for cell lines. Initial testing identified a >10% Mycoplasma contamination rate. While the implementation of systematic testing has not fully suppressed Mycoplasma contamination rates, clearly defined protocols that include the immediate destruction of contaminated cell lines wherever possible has enabled rapid intervention and removal of compromised cell lines. Data for >2000 cell line samples tested over 3 years, and case studies are provided. STR testing of 186 cell lines with established STR profiles revealed only five misidentified cell lines, all of which were received from external labs. The data collected over the 3 years since implementation of this systematic testing demonstrate the importance of continual vigilance for rapid identification of "problem" cell lines, for ensuring reproducible data in translational science research.
Assuntos
Técnicas de Cultura de Células/métodos , Mycoplasma/isolamento & purificação , Controle de Qualidade , Pesquisa Translacional Biomédica/normas , Linhagem Celular Tumoral , Humanos , Repetições de Microssatélites/genética , Mycoplasma/patogenicidade , National Center for Advancing Translational Sciences (U.S.) , Reação em Cadeia da Polimerase , Pesquisa Translacional Biomédica/tendências , Estados Unidos/epidemiologiaRESUMO
Lactate dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactate, with concomitant oxidation of reduced nicotinamide adenine dinucleotide as the final step in the glycolytic pathway. Glycolysis plays an important role in the metabolic plasticity of cancer cells and has long been recognized as a potential therapeutic target. Thus, potent, selective inhibitors of LDH represent an attractive therapeutic approach. However, to date, pharmacological agents have failed to achieve significant target engagement in vivo, possibly because the protein is present in cells at very high concentrations. We report herein a lead optimization campaign focused on a pyrazole-based series of compounds, using structure-based design concepts, coupled with optimization of cellular potency, in vitro drug-target residence times, and in vivo PK properties, to identify first-in-class inhibitors that demonstrate LDH inhibition in vivo. The lead compounds, named NCATS-SM1440 (43) and NCATS-SM1441 (52), possess desirable attributes for further studying the effect of in vivo LDH inhibition.
Assuntos
Inibidores Enzimáticos/farmacologia , L-Lactato Desidrogenase/antagonistas & inibidores , Pirazóis/farmacologia , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Meia-Vida , Humanos , Camundongos , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Drug resistance represents a major challenge to achieving durable responses to cancer therapeutics. Resistance mechanisms to epigenetically targeted drugs remain largely unexplored. We used bromodomain and extra-terminal domain (BET) inhibition in neuroblastoma as a prototype to model resistance to chromatin modulatory therapeutics. Genome-scale, pooled lentiviral open reading frame (ORF) and CRISPR knockout rescue screens nominated the phosphatidylinositol 3-kinase (PI3K) pathway as promoting resistance to BET inhibition. Transcriptomic and chromatin profiling of resistant cells revealed that global enhancer remodeling is associated with upregulation of receptor tyrosine kinases (RTKs), activation of PI3K signaling, and vulnerability to RTK/PI3K inhibition. Large-scale combinatorial screening with BET inhibitors identified PI3K inhibitors among the most synergistic upfront combinations. These studies provide a roadmap to elucidate resistance to epigenetic-targeted therapeutics and inform efficacious combination therapies.
Assuntos
Azepinas/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Indazóis/farmacologia , Terapia de Alvo Molecular/métodos , Neuroblastoma/tratamento farmacológico , Sulfonamidas/farmacologia , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Intervalo Livre de Doença , Epigênese Genética/efeitos dos fármacos , Feminino , Humanos , Camundongos Nus , Neuroblastoma/genética , Neuroblastoma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Natural products and their derivatives continue to be wellsprings of nascent therapeutic potential. However, many laboratories have limited resources for biological evaluation, leaving their previously isolated or synthesized compounds largely or completely untested. To address this issue, the Canvass library of natural products was assembled, in collaboration with academic and industry researchers, for quantitative high-throughput screening (qHTS) across a diverse set of cell-based and biochemical assays. Characterization of the library in terms of physicochemical properties, structural diversity, and similarity to compounds in publicly available libraries indicates that the Canvass library contains many structural elements in common with approved drugs. The assay data generated were analyzed using a variety of quality control metrics, and the resultant assay profiles were explored using statistical methods, such as clustering and compound promiscuity analyses. Individual compounds were then sorted by structural class and activity profiles. Differential behavior based on these classifications, as well as noteworthy activities, are outlined herein. One such highlight is the activity of (-)-2(S)-cathafoline, which was found to stabilize calcium levels in the endoplasmic reticulum. The workflow described here illustrates a pilot effort to broadly survey the biological potential of natural products by utilizing the power of automation and high-throughput screening.
RESUMO
The platinum-based anticancer agents cisplatin, carboplatin, and oxaliplatin represent a spectacular translational science achievement. The basic research observations that led to the discovery of Pt complexes as DNA-binding agents that elicit cell arrest, the preclinical tumor regression studies, and the inorganic medicinal chemistry that led to clinical implementation of effective platinum complexes in the clinic have fueled multidisciplinary research into platinum-based drugs. While the successes are clear and the research activity continues, a significant window of time has passed since a new Pt drug has been approved for clinical use. Here we assess the current Pt drug landscape and challenges for future Pt development and discuss opportunities for improving our understanding of Pt drugs that utilize contemporary translational science tools such as chemical biology and real-time imaging. The underexplored spaces may reveal new opportunities for Pt drug development.
Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Compostos Organoplatínicos/química , Compostos Organoplatínicos/uso terapêutico , Pesquisa Translacional Biomédica , HumanosRESUMO
Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are key metabolic enzymes that are mutated in a variety of cancers to confer a gain-of-function activity resulting in the accumulation of an oncometabolite, D-2-hydroxyglutarate (2-HG). Accumulation of 2-HG can result in epigenetic dysregulation and a block in cellular differentiation, suggesting these mutations play a role in neoplasia. Based on its potential as a cancer target, a number of small molecule inhibitors have been developed to specifically inhibit mutant forms of IDH (mIDH1 and mIDH2). We present a comprehensive suite of in vitro preclinical drug development assays that can be used as a tool-box to identify lead compounds for mIDH drug discovery programs, as well as what we believe is the most comprehensive publically available dataset on the top mIDH inhibitors. This involved biochemical, cell-based, and tier-one ADME techniques.
Assuntos
Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/genética , Mutação/genética , Diferenciação Celular/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Estabilidade Enzimática , Fluorescência , Glutaratos/metabolismo , Ensaios de Triagem em Larga Escala , Histonas/metabolismo , Humanos , Isocitrato Desidrogenase/metabolismo , Metilação , Modelos Biológicos , Monócitos/citologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Células THP-1RESUMO
We report the discovery and medicinal chemistry optimization of a novel series of pyrazole-based inhibitors of human lactate dehydrogenase (LDH). Utilization of a quantitative high-throughput screening paradigm facilitated hit identification, while structure-based design and multiparameter optimization enabled the development of compounds with potent enzymatic and cell-based inhibition of LDH enzymatic activity. Lead compounds such as 63 exhibit low nM inhibition of both LDHA and LDHB, submicromolar inhibition of lactate production, and inhibition of glycolysis in MiaPaCa2 pancreatic cancer and A673 sarcoma cells. Moreover, robust target engagement of LDHA by lead compounds was demonstrated using the cellular thermal shift assay (CETSA), and drug-target residence time was determined via SPR. Analysis of these data suggests that drug-target residence time (off-rate) may be an important attribute to consider for obtaining potent cell-based inhibition of this cancer metabolism target.