Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 34(51): 15763-15772, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30481036

RESUMO

We show femtosecond direct laser-induced assembly of gold nanostructures with plasmon resonance band variable as a function of laser irradiation in a wide range of visible wavelengths. A system of 2-photon lithography is used to achieve site-selectively controlled dewetting of a thin gold film into nanostructures in which size and shape are highly dependent on the laser power. Simultaneous measurements of localized surface plasmon resonance (LSPR) and surface enhanced Raman scattering (SERS) in the presence of various concentrations of trans-1,2-bis(4-pyridyl) ethylene (BPE) as target molecule are performed in order to highlight the relationship between structural dimensions, plasmonic effect, and detection activity. The resulting gold NPs exhibit high sensitivity as both LSPR and SERS sensors and allow the detection of picomolar concentrations of BPE with a SERS enhancement factor (SEF) of 1.33 × 109 and a linear detection range between 10-3 and 10-12 M.

2.
ACS Appl Mater Interfaces ; 13(44): 53021-53029, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34708655

RESUMO

We combine a gas-adsorbent microporous hybrid silica layer and a dense TiO2 Mie resonator array (metasurface), both obtained by sol-gel deposition and nanoimprint lithography, to form nanocomposite systems with high sensitivity for refractive index (RI) variations induced by gas adsorption. Using optical transduction based on direct specular reflection, we show spectral shifts of 4470 nm/RIU corresponding to 0.2 nm/ppm gas (air concentration) and reflection intensity changes of R* = 17 (R/RIU) and 0.55 × 10-3 R/ppm (air concentration). The metasurface is composed of hexagonally arranged TiO2 nanopillar arrays, whereas the surrounding sensitive material is a class II microporous hybrid silica, containing methyl and phenyl covalently bonded organic functions. This hybrid layer shows efficient adsorption capability of volatile organic molecules such as isopropanol, which is used to induce slight variations of RI around the TiO2 antennas. Specular reflectance variations at 45° incidence and refractive index measurements are performed using a spectroscopic ellipsometer. The presence of the titania metasurface enhances the signal by almost an order of magnitude with respect to the 2D counterpart (simulated as an effective medium approximation) and is attributed to the antenna effect, enhancing the interaction of the confined electromagnetic wave with the sensitive microporous medium. This sol-gel nanocomposite system presents many advantages such as high throughput and low-cost elaboration of elements and a high chemical, mechanical, and thermal resistance, ensuring high stability as a potential gas-sensitive nanocomposite layer for long periods. This work is a case study of improving the sensitivity of sol-gel gas-sensitive materials in optical transduction, which will be exploited in further works to develop artificial noses.

3.
ACS Appl Mater Interfaces ; 13(31): 37761-37774, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34320811

RESUMO

Fabrication and scaling of disordered hyperuniform materials remain hampered by the difficulties in controlling the spontaneous phenomena leading to this novel kind of exotic arrangement of objects. Here, we demonstrate a hybrid top-down/bottom-up approach based on sol-gel dip-coating and nanoimprint lithography for the faithful reproduction of disordered hyperuniform metasurfaces in metal oxides. Nano- to microstructures made of silica and titania can be directly printed over several cm2 on glass and on silicon substrates. First, we describe the polymer mold fabrication starting from a hard master obtained via spontaneous solid-state dewetting of SiGe and Ge thin layers on SiO2. Then, we assess the effective disordered hyperuniform character of master and replica and the role of the thickness of the sol-gel layer on the metal oxide replicas and on the presence of a residual layer underneath. Finally, as a potential application, we show the antireflective character of titania structures on silicon. Our results are relevant for the realistic implementation over large scales of disordered hyperuniform nano- and microarchitectures made of metal oxides, thus opening their exploitation in the framework of wet chemical assembly.

4.
Nanoscale ; 12(25): 13368-13376, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32373825

RESUMO

Engineering photothermal effects in plasmonic materials is of paramount importance for many applications, such as cancer therapy, chemical synthesis, cold catalysis and, more recently, metasurfaces. The evaluation of plasmonic heating at the nanoscale is challenging and generally requires sophisticated equipments and/or temperature-sensitive probes such as fluorescent molecules or materials. Here, we propose to use water vapor as a probe to evaluate the local heating around plasmonic nanoparticles. We demonstrate the concept for the case of a plasmonic colloidal film characterized by bi-modal nanoporosity. In particular, we exploit the thermal and light water liquid-vapor phase transitions taking place in the nanoporous medium that can be triggered by external stimuli, such as heating or irradiation, to obtain structural and optical variations in the film. The local temperature is then estimated using spectroscopic ellipsometry data acquired by a multimodal chamber. More generally, this method offers a simple and general approach to determine the local temperature that only requires a nanoporous material and water vapor, such as environmental humidity. In addition, this approach can be further generalized to other materials, vapor molecules or optical techniques.

5.
ACS Appl Mater Interfaces ; 12(12): 13598-13612, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32077678

RESUMO

Mesoporous silica nanoparticles (MSNs) have seen a fast development as drug delivery carriers thanks to their tunable porosity and high loading capacity. The employ of MSNs in biomedical applications requires a good understanding of their degradation behavior both to control drug release and to assess possible toxicity issues on human health. In this work, we study mesoporous silica degradation in biologically relevant conditions through in situ ellipsometry on model mesoporous nanoparticle or continuous thin films, in buffer solution and in media containing proteins. In order to shed light on the structure/dissolution relationship, we performed dissolution experiments far from soluble silicate species saturation. Via a complete decorrelation of dissolution and diffusion contributions, we proved unambiguously that surface area of silica vectors is the main parameter influencing dissolution kinetics, while thermal treatment and open mesoporous network architecture have a minor impact. As a logical consequence of our dissolution model, we proved that the dissolution lag-time can be promoted by selective blocking of the mesopores that limits the access to the mesoporous internal surface. This study was broadened by studying the impact of the organosilanes in the silica structure, of the presence of residual structuring agents, and of the chemical composition of the dissolution medium. The presence of albumin at blood concentration was found affecting drastically the dissolution kinetics of the mesoporous structure, acting as a diffusion barrier. Globally, we could identify the main factors affecting mesoporous silica materials degradation and proved that we can tune their structure and composition for adjusting dissolution kinetics in order to achieve efficient drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/química , Proteínas/química , Dióxido de Silício/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Cinética , Nanopartículas/uso terapêutico , Porosidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa