Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 29(13): 19891-19902, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34266090

RESUMO

We demonstrate supercontinuum generation in a liquid-core microstructured optical fiber using carbon disulfide as the core material. The fiber provides a specific dispersion landscape with a zero-dispersion wavelength approaching the telecommunication domain where the corresponding capillary-type counterpart shows unsuitable dispersion properties for soliton fission. The experiments were conducted using two pump lasers with different pulse duration (30 fs and 90 fs) giving rise to different non-instantaneous contributions of carbon disulfide in each case. The presented results demonstrate an extraordinary high conversion efficiency from pump to soliton and to dispersive wave, overall defining a platform that enables studying the impact of non-instantaneous responses on ultrafast soliton dynamics and coherence using straightforward pump lasers and diagnostics.

2.
Opt Express ; 28(2): 2557-2571, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32121942

RESUMO

Supercontinuum generation is a key process for nonlinear tailored light generation and strongly depends on the dispersion of the underlying waveguide. Here we reveal the nonlinear dynamics of soliton-based supercontinuum generation in case the waveguide includes a strongly dispersive resonance. Assuming a gas-filled hollow core fiber that includes a Lorentzian-type dispersion term, effects such as multi-color dispersive wave emission and cascaded four-wave mixing have been identified to be the origin of the observed spectral broadening, greatly exceeding the bandwidths of corresponding non-resonant fibers. Moreover, we obtain large spectral bandwidth at low soliton numbers, yielding broadband spectra within the coherence limit. Due to the mentioned advantages, we believe the concept of resonance-enhanced supercontinuum generation to be highly relevant for future nonlinear light sources.

3.
Opt Express ; 28(3): 3097-3106, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32121984

RESUMO

We show that the ultrafast nonlinear dynamics in supercontinuum generation can be tailored via mixture-based liquid core fibers. Samples containing mixtures of inorganic solvents allow changing dispersion from anomalous to normal, i.e., shifting zero dispersion across pump laser wavelength. A significant control over modulation instability and four-wave mixing has been demonstrated experimentally in record-long (up to 60 cm) samples in agreement with simulations when using sub-psec pulses at 1.555 µm. The smallest concentration ratio yields indications of soliton-fission based supercontinuum generation at soliton numbers that are beyond the coherence limit. The presented dispersion tuning scheme allows creating unprecedented dispersion landscapes for accessing unexplored nonlinear phenomena and selected laser sources.

4.
Opt Lett ; 45(24): 6859-6862, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33325914

RESUMO

Geometrically induced birefringence represents a pathway for precisely engineering the modes in fibers and is particularly relevant for applications that crucially depend on modal dispersion. Here liquid core fibers (LCFs) with elliptical cores are analyzed in view of modal properties and third-harmonic generation (THG) numerically and experimentally. Using finite element modeling, the impact of ellipticity on phase matching, inter-modal coupling, electric field distribution, and birefringence are investigated. Significant THG in practically relevant modes, in accordance with phase-matching calculations, was measured in inorganic solvent-based LCFs.

5.
Opt Lett ; 45(11): 2985-2988, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32479439

RESUMO

Accurate dispersion management is key for efficient nonlinear light generation. Here, we demonstrate that composite-liquid-core fibers-fibers with binary liquid mixtures as the core medium-allow for accurate and tunable control of dispersion, loss, and nonlinearity. Specifically, we show numerically that mixtures of organic and inorganic solvents in silica capillaries yield anomalous dispersion and reasonable nonlinearity at telecommunication wavelengths. This favorable operation domain is experimentally verified in various liquid systems through dispersion-sensitive supercontinuum generation, with all results being consistent with theoretical designs and simulations. Our results confirm that mixtures introduce a cost-effective means for liquid-core fiber design that allows for loss control, nonlinear response variation, and dispersion engineering.

6.
Opt Express ; 27(21): 29491-29500, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31684209

RESUMO

Nonlinear pulse propagation inside highly nonlinear media requires accurate knowledge on the temporal response function of the materials used particular in the case of liquids. Here we study the impact of deuteration on the ultrafast dynamics of toluene and nitrobenzene via all optical Kerr gating, showing substantially different electronic and molecular contributions, which was quantified by fitting a multichannel decay model to the data points. Specifically we found that deuteration imposes the time-integrated nonlinearities to reduce particular for toluene which could be caused by both reduced electronic hyperpolarizabilities as well as weaker intermolecular interactions. The results achieved reveal that deuterated organic solvents represent promising materials for infrared photonics since they offer extended infrared transmission compared to their non-deuterated counterparts while maintained strong nonlinear responses.

7.
Opt Lett ; 44(9): 2236-2239, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042192

RESUMO

Due to their unique properties such as transparency, tunability, nonlinearity, and dispersion flexibility, liquid-core fibers represent an important approach for future coherent mid-infrared light sources. However, the damage thresholds of these fibers are largely unexplored. Here we report on the generation of soliton-based supercontinua in carbon disulfide (CS2) liquid-core fibers at average power levels as high as 0.5 W operating stably for a long term (>70 h) without any kind of degradation or damage. Additionally, we also show stable high-power pulse transmission through liquid-core fibers exceeding 1 W of output average power for both CS2 and tetrachloroethylene as core materials.

8.
Opt Lett ; 44(3): 626-629, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30702695

RESUMO

We demonstrate that exposed-core microstructured optical fibers offer multiple degrees of freedom for tailoring third-harmonic generation through the core diameter, input polarization, and nanofilm deposition. Varying these parameters allows control of the phase-matching position between an infrared pump wavelength and the generated visible wavelengths. In this Letter, we show how increasing the core diameter over previous experiments (2.57 µm compared to 1.85 µm) allows the generation of multiple wavelengths, which can be further controlled by rotating the input pump polarization and the deposition of dielectric nanofilms. This can lead to highly tailorable light sources for applications such as spectroscopy or nonlinear microscopy.

9.
Opt Express ; 26(3): 3221-3235, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401853

RESUMO

We report on soliton-fission mediated infrared supercontinuum generation in liquid-core step-index fibers using highly transparent carbon chlorides (CCl4, C2Cl4). By developing models for the refractive index dispersions and nonlinear response functions, dispersion engineering and pumping with an ultrafast thulium fiber laser (300 fs) at 1.92 µm, distinct soliton fission and dispersive wave generation was observed, particularly in the case of tetrachloroethylene (C2Cl4). The measured results match simulations of both the generalized and a hybrid nonlinear Schrödinger equation, with the latter resembling the characteristics of non-instantaneous medium via a static potential term and representing a simulation tool with substantially reduced complexity. We show that C2Cl4 has the potential for observing non-instantaneous soliton dynamics along meters of liquid-core fiber opening a feasible route for directly observing hybrid soliton dynamics.

10.
Nano Lett ; 17(2): 631-637, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-27983862

RESUMO

We propose and experimentally demonstrate a monolithic nanowire-enhanced fiber-based nanoprobe for the broadband delivery of light (550-730 nm) to a deep subwavelength scale using short-range surface plasmons. The geometry is formed by a step index fiber with an integrated gold nanowire in its core and a protruding gold nanotip with sub-10 nm apex radius. We present a novel coupling scheme to excite short-range surface plasmons, whereby the radially polarized hybrid mode propagating inside the nanowire section excites the plasmonic mode close to the fiber endface, which is in turn superfocused down to nanoscale dimensions at the tip apex. We show that in this all-integrated fiber-plasmonic coupling scheme the wire length can be orders of magnitude longer than the attenuation length of short-range plasmon polaritons, yielding a broadband plasmon excitation and reducing demands in fabrication. We observe that the scattered light in the far-field from the nanotip is axially polarized and preferentially excited by a radially polarized input, unambiguously revealing that it originates from a short-range plasmon propagating on the nanotip, in agreement with simulations. This novel excitation scheme will have important applications in near-field microscopy and nanophotonics and potentially offers significantly improved resolution compared to current delivery near-field probes.

11.
Opt Express ; 25(19): 22932-22946, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-29041599

RESUMO

We present a monolithic fiber device that enables investigation of the thermo- and piezo-optical properties of liquids using straightforward broadband transmission measurements. The device is a directional mode coupler consisting of a multi-mode liquid core and a single-mode glass core with pronounced coupling resonances whose wavelength strongly depend on the operation temperature. We demonstrated the functionality and flexibility of our device for carbon disulfide, extending the current knowledge of the thermo-optic coefficient by 200 nm at 20 °C and uniquely for high temperatures. Moreover, our device allows measuring the piezo-optic coefficient of carbon disulfide, confirming results first obtained by Röntgen in 1891. Finally, we applied our approach to obtain the dispersion of the thermo-optic coefficients of benzene and tetrachloroethylene between 450 and 800 nm, whereas no data was available for the latter so far.

12.
Opt Lett ; 42(9): 1812-1815, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28454167

RESUMO

Intermodal third-harmonic generation using waveguides is an effective frequency conversion process due to the combination of long interaction lengths and strong modal confinement. Here we introduce the concept of tuning the third harmonic phase-matching condition via the use of dielectric nanofilms located on an open waveguide core. We experimentally demonstrate that tantalum oxide nanofilms coated onto the core of an exposed core fiber allow tuning the third harmonic wavelength over 30 nm, as confirmed by qualitative simulations. Due to its generic character, the presented tuning scheme can be applied to any form of exposed core waveguide and will find applications in fields including microscopy, biosensing, and quantum optics.

13.
Opt Express ; 24(14): 16191-205, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27410885

RESUMO

Optical fibers with sub-wavelength cores are promising systems for efficient nonlinear light generation. Here we reveal that the single-mode criterion represents a convenient design tool to optimize the performance of nonlinear fibers circumventing intense numerical calculations. We introduce a quasi-analytic expression for the nonlinear coefficient allowing us to investigate its behavior over a large parameter range. The study is independent of the actual value of the material nonlinearity and shows the fundamental dependencies of the nonlinear coefficient on wavelength, refractive index and core diameter, elucidated by detailed case studies of fused silica and chalcogenide tapers and hybrid fibers.

14.
Opt Express ; 24(16): 17860-7, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27505753

RESUMO

Inter-modal phase-matched third harmonic generation has been demonstrated in an exposed-core microstructured optical fiber. Our fiber, with a partially open core having a diameter of just 1.85 µm, shows efficient multi-peak third-harmonic generation between 500 nm and 530 nm, with a maximum visible-wavelength output of 0.96 µW. Mode images and simulations show strong agreement, confirming the phase-matching process and polarization dependence. We anticipate this work will lead to tailorable and tunable visible light sources by exploiting the open access to the optical fiber core, such as depositing thin-film coatings in order to shift the phase matching conditions.

15.
Opt Lett ; 41(15): 3519-22, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27472608

RESUMO

We reveal the potential of step-index fibers consisting of a metaphosphate glass core and a silica cladding as an ultrafast octave-spanning supercontinuum source. The hybrid waveguide was fabricated by pressure-assisted melt filling and possesses a sophisticated dispersion behavior with two zero-dispersion points in the proximity of the Erbium laser bands. The fiber generates an octave-spanning supercontinuum from 0.7 to 2.4 µm if pumped at 1.56 µm with 30 fs pulses and energies as low as 300 pJ. Numerical simulations reveal soliton fission and double dispersive wave generation as the dominant broadening effect. This study highlights phosphate glasses as a promising new candidate for the next generation of broadband photonic devices, as they allow for high rare earth-doping levels and dispersion posttuning via plasmonic nanoparticle growth.

16.
Opt Lett ; 41(22): 5377-5380, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27842136

RESUMO

The marker-free and noninvasive detection of small traces of analytes in aqueous solution using integrated optical resonators is an emerging technique within bioanalytics. Here, we present a single-mode silicon-nitride stadium resonator operating at the red edge of the visible spectrum, showing sensitivities larger than 200 nm/RIU and transmission dips with extinction ratios of more than 15 dB. We introduce a mathematical model that allows analyzing of the resonator sensitivity using the properties of the guided mode only. Large geometric parameter scans using finite element simulations show that optimal sensing conditions are achieved for TM-polarized modes close to the modal cutoff. Due to its compactness and the short operation wavelength, we anticipate applications of our resonator for integrated bioanalytics.

17.
Sci Rep ; 14(1): 977, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200053

RESUMO

We experimentally demonstrate frequency non-degenerate photon-pair generation via spontaneous four-wave mixing from a novel CS2-filled microstructured optical fiber. CS2 has high nonlinearity, narrow Raman lines, a broad transmission spectrum, and also has a large index contrast with the microstructured silica fiber. We can achieve phase matching over a large spectral range by tuning the pump wavelength, allowing the generation of idler photons in the infrared region, which is suitable for applications in quantum spectroscopy. Moreover, we demonstrate a coincidence-to-accidental ratio of larger than 90 and a pair generation efficiency of about [Formula: see text] per pump pulse, which shows the viability of this fiber-based platform as a photon-pair source for quantum technology applications.

18.
Anal Chem ; 85(14): 6703-15, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23781826

RESUMO

Over the past years fast label-free nonlinear imaging modalities providing molecular contrast of endogenous disease markers with subcellular spatial resolution have been emerged. However, applications of these imaging modalities in clinical settings are still at the very beginning. This is because single nonlinear imaging modalities such as second-harmonic generation (SHG) and two-photon excited fluorescence (TPEF) have only limited value for diagnosing diseases due to the small number of endogenous markers. Coherent anti-Stokes Raman scattering (CARS) microscopy on the other hand can potentially be added to SHG and TPEF to visualize a much broader range of marker molecules. However, CARS requires a second synchronized laser source and the detection of a certain wavenumber range of the vibrational spectrum to differentiate multiple molecules, which results in increased experimental complexity and often inefficient excitation of SHG and TPEF signals. Here we report the application of a novel near-infrared (NIR) fiber laser of 1 MHz repetition rate, 65 ps pulse duration, and 1 cm(-1) spectral resolution to realize an efficient but experimentally simple SGH/TPEF/multiplex CARS multimodal imaging approach for a label-free characterization of composition of complex tissue samples. This is demonstrated for arterial tissue specimens demonstrating differentiation of elastic fibers, triglycerides, collagen, myelin, cellular cytoplasm, and lipid droplets by analyzing the CARS spectra within the C-H stretching region only. A novel image analysis approach for multispectral CARS data based on colocalization allows correlating spectrally distinct pixels to morphologic structures. Transfer of this highly precise but compact and simple to use imaging approach into clinical settings is expected in the near future.


Assuntos
Testes Diagnósticos de Rotina/métodos , Imagem Multimodal/métodos , Análise Espectral Raman/métodos , Artérias/química , Artérias/patologia , Humanos , Microscopia/métodos
19.
Adv Sci (Weinh) ; 10(35): e2303835, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37786262

RESUMO

The performance limitations of traditional computer architectures have led to the rise of brain-inspired hardware, with optical solutions gaining popularity due to the energy efficiency, high speed, and scalability of linear operations. However, the use of optics to emulate the synaptic activity of neurons has remained a challenge since the integration of nonlinear nodes is power-hungry and, thus, hard to scale. Neuromorphic wave computing offers a new paradigm for energy-efficient information processing, building upon transient and passively nonlinear interactions between optical modes in a waveguide. Here, an implementation of this concept is presented using broadband frequency conversion by coherent higher-order soliton fission in a single-mode fiber. It is shown that phase encoding on femtosecond pulses at the input, alongside frequency selection and weighting at the system output, makes transient spectro-temporal system states interpretable and allows for the energy-efficient emulation of various digital neural networks. The experiments in a compact, fully fiber-integrated setup substantiate an anticipated enhancement in computational performance with increasing system nonlinearity. The findings suggest that broadband frequency generation, accessible on-chip and in-fiber with off-the-shelf components, may challenge the traditional approach to node-based brain-inspired hardware design, ultimately leading to energy-efficient, scalable, and dependable computing with minimal optical hardware requirements.

20.
Opt Express ; 20(4): 4484-93, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22418207

RESUMO

A novel approach for an all-fiber mono-laser source for CARS microscopy is presented. An Yb-fiber laser generates 100 ps pulses, which later undergo narrowband in-fiber frequency conversion based on degenerate four-wave-mixing. The frequency conversion is optimized to access frequency shifts between 900 and 3200cm-1, relevant for vibrational imaging. Inherently synchronized pump and Stokes pulses are available at one fiber end, readily overlapped in space and time. The source is applied to CARS spectroscopy and microscopy experiments in the CH-stretching region around 3000cm-1. Due to its simplicity and maintenance-free operation, the laser scheme holds great potential for bio-medical applications outside laser laboratories.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa