Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Neuroimage ; 292: 120594, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569980

RESUMO

Converging evidence increasingly suggests that psychiatric disorders, such as major depressive disorder (MDD) and autism spectrum disorder (ASD), are not unitary diseases, but rather heterogeneous syndromes that involve diverse, co-occurring symptoms and divergent responses to treatment. This clinical heterogeneity has hindered the progress of precision diagnosis and treatment effectiveness in psychiatric disorders. In this study, we propose BPI-GNN, a new interpretable graph neural network (GNN) framework for analyzing functional magnetic resonance images (fMRI), by leveraging the famed prototype learning. In addition, we introduce a novel generation process of prototype subgraph to discover essential edges of distinct prototypes and employ total correlation (TC) to ensure the independence of distinct prototype subgraph patterns. BPI-GNN can effectively discriminate psychiatric patients and healthy controls (HC), and identify biological meaningful subtypes of psychiatric disorders. We evaluate the performance of BPI-GNN against 11 popular brain network classification methods on three psychiatric datasets and observe that our BPI-GNN always achieves the highest diagnosis accuracy. More importantly, we examine differences in clinical symptom profiles and gene expression profiles among identified subtypes and observe that our identified brain-based subtypes have the clinical relevance. It also discovers the subtype biomarkers that align with current neuro-scientific knowledge.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Adulto , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/classificação , Transtornos Mentais/diagnóstico , Feminino , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/classificação , Adulto Jovem , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/diagnóstico
2.
Eur Arch Psychiatry Clin Neurosci ; 273(1): 169-181, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35419632

RESUMO

Accumulating evidence suggests that the brain is highly dynamic; thus, investigation of brain dynamics especially in brain connectivity would provide crucial information that stationary functional connectivity could miss. This study investigated temporal expressions of spatial modes within the default mode network (DMN), salience network (SN) and cognitive control network (CCN) using a reliable data-driven co-activation pattern (CAP) analysis in two independent data sets. We found enhanced CAP-to-CAP transitions of the SN in patients with MDD. Results suggested enhanced flexibility of this network in the patients. By contrast, we also found reduced spatial consistency and persistence of the DMN in the patients, indicating reduced variability and stability in individuals with MDD. In addition, the patients were characterized by prominent activation of mPFC. Moreover, further correlation analysis revealed that persistence and transitions of RCCN were associated with the severity of depression. Our findings suggest that functional connectivity in the patients may not be simply attenuated or potentiated, but just alternating faster or slower among more complex patterns. The aberrant temporal-spatial complexity of intrinsic fluctuations reflects functional diaschisis of resting-state networks as characteristic of patients with MDD.


Assuntos
Transtorno Depressivo Maior , Humanos , Depressão , Imageamento por Ressonância Magnética/métodos , Encéfalo , Mapeamento Encefálico , Vias Neurais
3.
Entropy (Basel) ; 24(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35455118

RESUMO

The spiking neural network (SNN) is regarded as a promising candidate to deal with the great challenges presented by current machine learning techniques, including the high energy consumption induced by deep neural networks. However, there is still a great gap between SNNs and the online meta-learning performance of artificial neural networks. Importantly, existing spike-based online meta-learning models do not target the robust learning based on spatio-temporal dynamics and superior machine learning theory. In this invited article, we propose a novel spike-based framework with minimum error entropy, called MeMEE, using the entropy theory to establish the gradient-based online meta-learning scheme in a recurrent SNN architecture. We examine the performance based on various types of tasks, including autonomous navigation and the working memory test. The experimental results show that the proposed MeMEE model can effectively improve the accuracy and the robustness of the spike-based meta-learning performance. More importantly, the proposed MeMEE model emphasizes the application of the modern information theoretic learning approach on the state-of-the-art spike-based learning algorithms. Therefore, in this invited paper, we provide new perspectives for further integration of advanced information theory in machine learning to improve the learning performance of SNNs, which could be of great merit to applied developments with spike-based neuromorphic systems.

4.
Entropy (Basel) ; 23(11)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34828168

RESUMO

Unmanned aerial vehicles (UAVs) can be deployed as base stations (BSs) for emergency communications of user equipments (UEs) in 5G/6G networks. In multi-UAV communication networks, UAVs' load balancing and UEs' data rate fairness are two challenging problems and can be optimized by UAV deployment strategies. In this work, we found that these two problems are related by the same performance metric, which makes it possible to optimize the two problems simultaneously. To solve this joint optimization problem, we propose a UAV diffusion deployment algorithm based on the virtual force field method. Firstly, according to the unique performance metric, we define two new virtual forces, which are the UAV-UAV force and UE-UAV force defined by FU and FV, respectively. FV is the main contributor to load balancing and UEs' data rate fairness, and FU contributes to fine tuning the UEs' data rate fairness performance. Secondly, we propose a diffusion control stratedy to the update UAV-UAV force, which optimizes FV in a distributed manner. In this diffusion strategy, each UAV optimizes the local parameter by exchanging information with neighbor UAVs, which achieve global load balancing in a distributed manner. Thirdly, we adopt the successive convex optimization method to update FU, which is a non-convex problem. The resultant force of FV and FU is used to control the UAVs' motion. Simulation results show that the proposed algorithm outperforms the baseline algorithm on UAVs' load balancing and UEs' data rate fairness.

5.
J Neurosci Res ; 96(7): 1159-1175, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29406599

RESUMO

Over the past decade, the simultaneous recording of electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) data has garnered growing interest because it may provide an avenue towards combining the strengths of both imaging modalities. Given their pronounced differences in temporal and spatial statistics, the combination of EEG and fMRI data is however methodologically challenging. Here, we propose a novel screening approach that relies on a Cross Multivariate Correlation Coefficient (xMCC) framework. This approach accomplishes three tasks: (1) It provides a measure for testing multivariate correlation and multivariate uncorrelation of the two modalities; (2) it provides criterion for the selection of EEG features; (3) it performs a screening of relevant EEG information by grouping the EEG channels into clusters to improve efficiency and to reduce computational load when searching for the best predictors of the BOLD signal. The present report applies this approach to a data set with concurrent recordings of steady-state-visual evoked potentials (ssVEPs) and fMRI, recorded while observers viewed phase-reversing Gabor patches. We test the hypothesis that fluctuations in visuo-cortical mass potentials systematically covary with BOLD fluctuations not only in visual cortical, but also in anterior temporal and prefrontal areas. Results supported the hypothesis and showed that the xMCC-based analysis provides straightforward identification of neurophysiological plausible brain regions with EEG-fMRI covariance. Furthermore xMCC converged with other extant methods for EEG-fMRI analysis.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Eletroencefalografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Encéfalo/fisiologia , Mapeamento Encefálico/estatística & dados numéricos , Correlação de Dados , Interpretação Estatística de Dados , Eletroencefalografia/estatística & dados numéricos , Potenciais Evocados Visuais , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Interpretação de Imagem Assistida por Computador/estatística & dados numéricos , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Masculino , Imagem Multimodal/métodos , Imagem Multimodal/estatística & dados numéricos , Análise Multivariada
6.
Sensors (Basel) ; 18(11)2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30469453

RESUMO

In this paper, robust first and second-order divided difference filtering algorithms based on correntropy are proposed, which not only retain the advantages of divided difference filters, but also exhibit robustness in the presence of non-Gaussian noises, especially when the measurements are contaminated by heavy-tailed noises. The proposed filters are then applied to the problem of ship positioning. In order to improve the accuracy and reliability of ship positioning, the positioning method combines the Dead Reckoning (DR) algorithm and the Global Positioning System (GPS). Experimental results of an illustrative example show the superior performance of the new algorithms when applied to ship positioning.

7.
Neural Netw ; 172: 106147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38306785

RESUMO

There is a recent trend to leverage the power of graph neural networks (GNNs) for brain-network based psychiatric diagnosis, which, in turn, also motivates an urgent need for psychiatrists to fully understand the decision behavior of the used GNNs. However, most of the existing GNN explainers are either post-hoc in which another interpretive model needs to be created to explain a well-trained GNN, or do not consider the causal relationship between the extracted explanation and the decision, such that the explanation itself contains spurious correlations and suffers from weak faithfulness. In this work, we propose a granger causality-inspired graph neural network (CI-GNN), a built-in interpretable model that is able to identify the most influential subgraph (i.e., functional connectivity within brain regions) that is causally related to the decision (e.g., major depressive disorder patients or healthy controls), without the training of an auxillary interpretive network. CI-GNN learns disentangled subgraph-level representations α and ß that encode, respectively, the causal and non-causal aspects of original graph under a graph variational autoencoder framework, regularized by a conditional mutual information (CMI) constraint. We theoretically justify the validity of the CMI regulation in capturing the causal relationship. We also empirically evaluate the performance of CI-GNN against three baseline GNNs and four state-of-the-art GNN explainers on synthetic data and three large-scale brain disease datasets. We observe that CI-GNN achieves the best performance in a wide range of metrics and provides more reliable and concise explanations which have clinical evidence. The source code and implementation details of CI-GNN are freely available at GitHub repository (https://github.com/ZKZ-Brain/CI-GNN/).


Assuntos
Transtorno Depressivo Maior , Transtornos Mentais , Humanos , Transtorno Depressivo Maior/diagnóstico , Encéfalo/diagnóstico por imagem , Transtornos Mentais/diagnóstico , Aprendizagem , Redes Neurais de Computação
8.
Artigo em Inglês | MEDLINE | ID: mdl-38652627

RESUMO

As an emerging decentralized machine learning technique, federated learning organizes collaborative training and preserves the privacy and security of participants. However, untrustworthy devices, typically Byzantine attackers, pose a significant challenge to federated learning since they can upload malicious parameters to corrupt the global model. To defend against such attacks, we propose a novel robust aggregation method-maximum correntropy aggregation (MCA), which applies the maximum correntropy criterion (MCC) to derive a central value from parameters. Different from the previous use of MCC for denoising, we utilize it as a similarity metric to measure parameter distribution and aggregate a robust center. Correntropy in MCC, with all even-order moments of the parameter, contains high-order statistical properties, which allows for a comprehensive capture of parameter characteristics, thus helping to prevent interference from attackers. Meanwhile, correntropy extracts information from the parameters themselves, without requiring the proportion of malicious attackers. Through the fixed-point iteration, we solve the optimization objective, demonstrating the linear convergence of the iteration formula. Theoretical analysis reveals the robustness aggregation property of MCA and the error bound between MCA and the global optimal solution, with linear convergence to the optimal solution neighborhood. By performing independent identically distribution (IID) and non-IID experiments on three different datasets, we show that MCA exhibits significant robustness under mainstream attacks, whereas other methods cannot withstand all of them.

9.
IEEE Trans Image Process ; 33: 3749-3764, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848225

RESUMO

Crowd counting models in highly congested areas confront two main challenges: weak localization ability and difficulty in differentiating between foreground and background, leading to inaccurate estimations. The reason is that objects in highly congested areas are normally small and high-level features extracted by convolutional neural networks are less discriminative to represent small objects. To address these problems, we propose a learning discriminative features framework for crowd counting, which is composed of a masked feature prediction module (MPM) and a supervised pixel-level contrastive learning module (CLM). The MPM randomly masks feature vectors in the feature map and then reconstructs them, allowing the model to learn about what is present in the masked regions and improving the model's ability to localize objects in high-density regions. The CLM pulls targets close to each other and pushes them far away from background in the feature space, enabling the model to discriminate foreground objects from background. Additionally, the proposed modules can be beneficial in various computer vision tasks, such as crowd counting and object detection, where dense scenes or cluttered environments pose challenges to accurate localization. The proposed two modules are plug-and-play, incorporating the proposed modules into existing models can potentially boost their performance in these scenarios.

10.
IEEE Trans Cybern ; PP2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381633

RESUMO

Predicting the trajectory of pedestrians in crowd scenarios is indispensable in self-driving or autonomous mobile robot field because estimating the future locations of pedestrians around is beneficial for policy decision to avoid collision. It is a challenging issue because humans have different walking motions, and the interactions between humans and objects in the current environment, especially between humans themselves, are complex. Previous researchers focused on how to model human-human interactions but neglected the relative importance of interactions. To address this issue, a novel mechanism based on correntropy is introduced. The proposed mechanism not only can measure the relative importance of human-human interactions but also can build personal space for each pedestrian. An interaction module, including this data-driven mechanism, is further proposed. In the proposed module, the data-driven mechanism can effectively extract the feature representations of dynamic human-human interactions in the scene and calculate the corresponding weights to represent the importance of different interactions. To share such social messages among pedestrians, an interaction-aware architecture based on long short-term memory network for trajectory prediction is designed. Experiments are conducted on two public datasets. Experimental results demonstrate that our model can achieve better performance than several latest methods with good performance.

11.
Neural Netw ; 173: 106170, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387199

RESUMO

Owing to its ability to handle negative data and promising clustering performance, concept factorization (CF), an improved version of non-negative matrix factorization, has been incorporated into multi-view clustering recently. Nevertheless, existing CF-based multi-view clustering methods still have the following issues: (1) they directly conduct factorization in the original data space, which means its efficiency is sensitive to the feature dimension; (2) they ignore the high degree of factorization freedom of standard CF, which may lead to non-uniqueness factorization thereby causing reduced effectiveness; (3) traditional robust norms they used are unable to handle complex noises, significantly challenging their robustness. To address these issues, we establish a fast multi-view clustering via correntropy-based orthogonal concept factorization (FMVCCF). Specifically, FMVCCF executes factorization on a learned consensus anchor graph rather than directly decomposing the original data, lessening the dimensionality sensitivity. Then, a lightweight graph regularization term is incorporated to refine the factorization process with a low computational burden. Moreover, an improved multi-view correntropy-based orthogonal CF model is developed, which can enhance the effectiveness and robustness under the orthogonal constraint and correntropy criterion, respectively. Extensive experiments demonstrate that FMVCCF can achieve promising effectiveness and robustness on various real-world datasets with high efficiency.


Assuntos
Algoritmos , Análise por Conglomerados
12.
Artigo em Inglês | MEDLINE | ID: mdl-38356212

RESUMO

Due to its high computational complexity, graph-based methods have limited applicability in large-scale multiview clustering tasks. To address this issue, many accelerated algorithms, especially anchor graph-based methods and indicator learning-based methods, have been developed and made a great success. Nevertheless, since the restrictions of the optimization strategy, these accelerated methods still need to approximate the discrete graph-cutting problem to a continuous spectral embedding problem and utilize different discretization strategies to obtain discrete sample categories. To avoid the loss of effectiveness and efficiency caused by the approximation and discretization, we establish a discrete fast multiview anchor graph clustering (FMAGC) model that first constructs an anchor graph of each view and then generates a discrete cluster indicator matrix by solving the discrete multiview graph-cutting problem directly. Since the gradient descent-based method makes it hard to solve this discrete model, we propose a fast coordinate descent-based optimization strategy with linear complexity to solve it without approximating it as a continuous one. Extensive experiments on widely used normal and large-scale multiview datasets show that FMAGC can improve clustering effectiveness and efficiency compared to other state-of-the-art baselines.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38833406

RESUMO

Proper monitoring of anesthesia stages can guarantee the safe performance of clinical surgeries. In this study, different anesthesia stages were classified using near-infrared spectroscopy (NIRS) signals with machine learning. The cerebral hemodynamic variables of right proximal oxyhemoglobin (HbO2) in maintenance (MNT), emergence (EM) and the consciousness (CON) stage were collected and then the differences between the three stages were compared by phase-amplitude coupling (PAC). Then combined with time-domain including linear (mean, standard deviation, max, min and range), nonlinear (sample entropy) and power in frequency-domain signal features, feature selection was performed and finally classification was performed by support vector machine (SVM) classifier. The results show that the PAC of the NIRS signal was gradually enhanced with the deepening of anesthesia level. A good three-classification accuracy of 69.27% was obtained, which exceeded the result of classification of any single category feature. These results indicate the fesibility of NIRS signals in performing three or even more anesthesia stage classifications, providing insight into the development of new anesthesia monitoring modalities.

14.
Artigo em Inglês | MEDLINE | ID: mdl-37991917

RESUMO

Brain-inspired computing technique presents a promising approach to prompt the rapid development of artificial general intelligence (AGI). As one of the most critical aspects, spiking neural networks (SNNs) have demonstrated superiority for AGI, such as low power consumption. Effective training of SNNs with high generalization ability, high robustness, and low power consumption simultaneously is a significantly challenging problem for the development and success of applications of spike-based machine intelligence. In this research, we present a novel and flexible learning framework termed high-order spike-based information bottleneck (HOSIB) leveraging the surrogate gradient technique. The presented HOSIB framework, including second-order and third-order formation, i.e., second-order information bottleneck (SOIB) and third-order information bottleneck (TOIB), comprehensively explores the common latent architecture and the spike-based intrinsic information and discards the superfluous information in the data, which improves the generalization capability and robustness of SNN models. Specifically, HOSIB relies on the information bottleneck (IB) principle to prompt the sparse spike-based information representation and flexibly balance its exploitation and loss. Extensive classification experiments are conducted to empirically show the promising generalization ability of HOSIB. Furthermore, we apply the SOIB and TOIB algorithms in deep spiking convolutional networks to demonstrate their improvement in robustness with various categories of noise. The experimental results prove the HOSIB framework, especially TOIB, can achieve better generalization ability, robustness and power efficiency in comparison with the current representative studies.

15.
Neural Netw ; 168: 405-418, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804744

RESUMO

Minimum error entropy with fiducial points (MEEF) has received a lot of attention, due to its outstanding performance to curb the negative influence caused by non-Gaussian noises in the fields of machine learning and signal processing. However, the estimate of the information potential of MEEF involves a double summation operator based on all available error samples, which can result in large computational burden in many practical scenarios. In this paper, an efficient quantization method is therefore adopted to represent the primary set of error samples with a smaller subset, generating a quantized MEEF (QMEEF). Some basic properties of QMEEF are presented and proved from theoretical perspectives. In addition, we have applied this new criterion to train a class of linear-in-parameters models, including the commonly used linear regression model, random vector functional link network, and broad learning system as special cases. Experimental results on various datasets are reported to demonstrate the desirable performance of the proposed methods to perform regression tasks with contaminated data.


Assuntos
Algoritmos , Processamento de Sinais Assistido por Computador , Entropia , Modelos Lineares , Aprendizado de Máquina
16.
Front Neurosci ; 17: 1213035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457015

RESUMO

The Partial Least Square Regression (PLSR) method has shown admirable competence for predicting continuous variables from inter-correlated electrocorticography signals in the brain-computer interface. However, PLSR is essentially formulated with the least square criterion, thus, being considerably prone to the performance deterioration caused by the brain recording noises. To address this problem, this study aims to propose a new robust variant for PLSR. To this end, the maximum correntropy criterion (MCC) is utilized to propose a new robust implementation of PLSR, called Partial Maximum Correntropy Regression (PMCR). The half-quadratic optimization is utilized to calculate the robust projectors for the dimensionality reduction, and the regression coefficients are optimized by a fixed-point optimization method. The proposed PMCR is evaluated with a synthetic example and a public electrocorticography dataset under three performance indicators. For the synthetic example, PMCR realized better prediction results compared with the other existing methods. PMCR could also abstract valid information with a limited number of decomposition factors in a noisy regression scenario. For the electrocorticography dataset, PMCR achieved superior decoding performance in most cases, and also realized the minimal neurophysiological pattern deterioration with the interference of the noises. The experimental results demonstrate that, the proposed PMCR could outperform the existing methods in a noisy, inter-correlated, and high-dimensional decoding task. PMCR could alleviate the performance degradation caused by the adverse noises and ameliorate the electrocorticography decoding robustness for the brain-computer interface.

17.
Lab Chip ; 23(5): 1066-1079, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36625143

RESUMO

Single-cell profiling is key to uncover the cellular heterogeneity and drives deep understanding of cell fate. In recent years, microfluidics has become an ideal tool for single-cell profiling owing to its benefits of high throughput and automation. Among various microfluidic platforms, microwell has the advantages of simple operation and easy integration with in situ analysis ability, making it an ideal technique for single-cell studies. Herein, recent advances of single-cell analysis based on microwell array chips are summarized. We first introduce the design and preparation of different microwell chips. Then microwell-based cell capture and lysis strategies are discussed. We finally focus on advanced microwell-based analysis of single-cell proteins, nucleic acids, and metabolites. The challenges and opportunities for the development of microwell-based single-cell analysis are also presented.


Assuntos
Microfluídica , Ácidos Nucleicos , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Célula Única , Automação
18.
IEEE Trans Image Process ; 32: 6359-6372, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37971907

RESUMO

Counting objects in crowded scenes remains a challenge to computer vision. The current deep learning based approach often formulate it as a Gaussian density regression problem. Such a brute-force regression, though effective, may not consider the annotation displacement properly which arises from the human annotation process and may lead to different distributions. We conjecture that it would be beneficial to consider the annotation displacement in the dense object counting task. To obtain strong robustness against annotation displacement, generalized Gaussian distribution (GGD) function with a tunable bandwidth and shape parameter is exploited to form the learning target point annotation probability map, PAPM. Specifically, we first present a hand-designed PAPM method (HD-PAPM), in which we design a function based on GGD to tolerate the annotation displacement. For end-to-end training, the hand-designed PAPM may not be optimal for the particular network and dataset. An adaptively learned PAPM method (AL-PAPM) is proposed. To improve the robustness to annotation displacement, we design an effective transport cost function based on GGD. The proposed PAPM is capable of integration with other methods. We also combine PAPM with P2PNet through modifying the matching cost matrix, forming P2P-PAPM. This could also improve the robustness to annotation displacement of P2PNet. Extensive experiments show the superiority of our proposed methods.

19.
IEEE Trans Biomed Eng ; 70(8): 2416-2429, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37093731

RESUMO

OBJECTIVE: Recent studies have used sparse classifications to predict categorical variables from high-dimensional brain activity signals to expose human's mental states and intentions, selecting the relevant features automatically in the model training process. However, existing sparse classification models will likely be prone to the performance degradation which is caused by the noise inherent in the brain recordings. To address this issue, we aim to propose a new robust and sparse classification algorithm in this study. METHODS: To this end, we introduce the correntropy learning framework into the automatic relevance determination based sparse classification model, proposing a new correntropy-based robust sparse logistic regression algorithm. To demonstrate the superior brain activity decoding performance of the proposed algorithm, we evaluate it on a synthetic dataset, an electroencephalogram (EEG) dataset, and a functional magnetic resonance imaging (fMRI) dataset. RESULTS: The extensive experimental results confirm that not only the proposed method can achieve higher classification accuracy in a noisy and high-dimensional classification task, but also it would select those more informative features for the decoding tasks. CONCLUSION: Integrating the correntropy learning approach with the automatic relevance determination technique will significantly improve the robustness with respect to the noise, leading to more adequate robust sparse brain decoding algorithm. SIGNIFICANCE: It provides a more powerful approach in the real-world brain activity decoding and the brain-computer interfaces.


Assuntos
Interfaces Cérebro-Computador , Encéfalo , Humanos , Modelos Logísticos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Aprendizagem , Imageamento por Ressonância Magnética/métodos , Algoritmos , Eletroencefalografia
20.
Front Neurosci ; 17: 1247315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37746136

RESUMO

This paper investigates the selection of voxels for functional Magnetic Resonance Imaging (fMRI) brain data. We aim to identify a comprehensive set of discriminative voxels associated with human learning when exposed to a neutral visual stimulus that predicts an aversive outcome. However, due to the nature of the unconditioned stimuli (typically a noxious stimulus), it is challenging to obtain sufficient sample sizes for psychological experiments, given the tolerability of the subjects and ethical considerations. We propose a stable hierarchical voting (SHV) mechanism based on stability selection to address this challenge. This mechanism enables us to evaluate the quality of spatial random sampling and minimizes the risk of false and missed detections. We assess the performance of the proposed algorithm using simulated and publicly available datasets. The experiments demonstrate that the regularization strategy choice significantly affects the results' interpretability. When applying our algorithm to our collected fMRI dataset, it successfully identifies sparse and closely related patterns across subjects and displays stable weight maps for three experimental phases under the fear conditioning paradigm. These findings strongly support the causal role of aversive conditioning in altering visual-cortical activity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa