Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 271: 115990, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262090

RESUMO

Improper disposal practices have caused environmental disruptions, possessing by heavy metal ions and radioactive elements in water and soil, where the innovative and sustainable remediation strategies are significantly imperative in last few decades. Microbially induced carbonate precipitation (MICP) has emerged as a pioneering technology for remediating contaminated soil and water. Generally, MICP employs urease-producing microorganisms to decompose urea (NH2CONH2) into ammonium (NH4+and carbon dioxide (CO2), thereby increasing pH levels and inducing carbonate precipitation (CO32-), and effectively removing remove contaminants. Nonetheless, the intricate mechanism underlying heavy metal mineralization poses a significant challenge, constraining its application in contaminants engineering, particularly in the context of prolonged heavy metal leaching over time and its efficacy in adverse environmental conditions. This review provides a comprehensive idea of recent development of MICP and its application in environmental engineering, examining metabolic pathways, mineral precipitation mechanisms, and environmental factors as well as providing future perspectives for commercial utilization. The use of ureolytic bacteria in MICP demonstrates cost-efficiency, environmental compatibility, and successful pollutant abatement over tradition bioremediation techniques, and bio-synthesis of nanoparticles. limitations such as large-scale application, elevated Ca2+levels in groundwater, and gradual contaminant release need to be overcome. The possible future research directions for MICP technology, emphasizing its potential in conventional remediation, CO2 sequestration, bio-material synthesis, and its role in reducing environmental impact for long-term economic benefits.


Assuntos
Elementos Radioativos , Metais Pesados , Solo/química , Água , Dióxido de Carbono/metabolismo , Metais Pesados/metabolismo , Carbonatos , Carbonato de Cálcio/química , Precipitação Química
2.
Ecol Evol ; 14(4): e11268, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38646006

RESUMO

The cryptic invasion of golden apple snails (Pomacea canaliculata and P. maculata) in Taiwan has caused significant ecological and economical damage over the last few decades, however, their management remains difficult due to inadequate taxonomic identification, complex phylogeny, and limited population genetic information. We aim to understand the current distribution, putative population of origin, genetic diversity, and potential path of cryptic invasion of Pomacea canaliculata and P. maculata across Taiwan to aid in improved mitigation approaches. The present investigation conducted a nationwide survey with 254 samples collected from 41 locations in 14 counties or cities across Taiwan. We identified P. canaliculata and P. maculata based on mitochondrial COI and compared their genetic diversity across Taiwan, as well as other introduced and native countries (based on publicly available COI data) to understand the possible paths of invasion to Taiwan. Based on mitochondrial COI barcoding, sympatric and heterogeneous distributions of invasive P. canaliculata and P. maculata were noted. Our haplotype analysis and mismatch distribution results suggested multiple introductions of P. canaliculata in Taiwan was likely originated directly from Argentina, whereas P. maculata was probably introduced from a single, or a few, introduction event(s) from Argentina and Brazil. Our population genetic data further demonstrated a higher haplotype and genetic diversity for P. canaliculata and P. maculata in Taiwan compared to other introduced regions. Based on our current understanding, the establishment of P. canaliculata and P. maculata is alarming and widespread beyond geopolitical borders, requiring a concerted and expedited national and international invasive species mitigation program.

3.
Heliyon ; 10(8): e29747, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38681598

RESUMO

With the progression of civilization, the harmony within nature has been disrupted, giving rise to various ecocidal activities that are evident in every spheres of the earth. These activities have had a profound and far-reaching impact on global health. One significant example of this is the presence of fluoride in groundwater exceeding acceptable limits, resulting in the widespread occurrence of "Fluorosis" worldwide. It is imperative to mitigate the concentration of fluoride in drinking water to meet safety standards. While various defluoridation techniques exist, they often have drawbacks. Biosorption, being a simple, affordable and eco-friendly method, has gained preference for defluoridation. However, its limited commercialization underscores the pressing need for further research in this domain. This comprehensive review article offers a thorough examination of the defluoridation potential of agro-based adsorbents, encompassing their specific chemical compositions and preparation methods. The review presents an in-depth discussion of the factors influencing fluoride biosorption and conducts a detailed exploration of adsorption isotherm and adsorption kinetic models to gain a comprehensive understanding of the nature of the adsorption process. Furthermore, it evaluates the commercial viability through an assessment of regeneration potential and a cost analysis of these agro-adsorbents, with the aim of facilitating the scalability of the defluoridation process. The elucidation of the adsorption mechanism and recommendations for overcoming challenges in large-scale implementation offer a comprehensive outlook on this eco-friendly and sustainable approach to fluoride removal. In summary, this review article equips readers with a lucid understanding of agro-adsorbents, elucidates their ideal conditions for improved performance, offers a more profound insight into the fluoride biosorption mechanism, and introduces the concept of effective spent adsorbent management.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa