Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Aquac Nutr ; 2024: 6682798, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38274322

RESUMO

We investigated the effects of dietary tannic acid (TA) supplementation of a high-carbohydrate diet on growth, feed utilization, whole-body proximate composition, serum biochemical indicators, antioxidant capacity, digestive enzyme activity, and liver and intestinal health of juvenile largemouth bass, Micropterus salmoides (initial mean weight: 8.08 ± 0.08 g). Five diets were prepared, including a positive control (dietary carbohydrate level, 16%, LC0), a negative control (dietary carbohydrate level, 21%, HC0), and three TA-supplementation diets based on the negative control diet with TA addition at 200, 400, and 800 mg/kg, respectively. After 8 weeks of feeding, the results showed that compared with the LC0 diet, 400-800 mg/kg dietary TA significantly improved the survival rate of largemouth bass (P < 0.05) while significantly reducing its weight-gain rate and specific growth rate (P < 0.05). Compared with the HC0 diet, 400 mg/kg dietary TA significantly increased serum catalase activity (P < 0.05), and significantly decreased serum malondialdehyde, liver glycogen, lightness (L ∗), and yellowness (b ∗) (P < 0.05). Moreover, compared with the HC0 diet, 200-400 mg/kg dietary TA effectively improved the vacuolation of hepatocytes caused by the high-carbohydrate diet and reduced the occurrence of intestinal epithelial cell vacuolation and necrosis. In turn, 800 mg/kg dietary TA significantly inhibited protease activity in the pyloric caecum and intestine (P < 0.05). In conclusion, dietary supplementation with TA inhibited protease activity, which resulted in decreased growth performance in largemouth bass. However, it was also found that 200-400 mg/kg TA enhanced the antioxidant capacity of largemouth bass in the case of the high-carbohydrate diet, reduced liver glycogen levels, and improved liver and intestinal health. Finally, it should be noted that, when the dietary TA level exceeded 800 mg/kg, TA appeared to play a pro-oxidation role in the liver, which may cause oxidative stress in the liver.

2.
Foods ; 12(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37835219

RESUMO

In this study, we addressed various challenges associated with the consumption of functional lipids from the Ericerus pela (Chavannes), including unfavorable taste, insolubility in water, difficulty in oral intake, low bioavailability, and low psychological acceptance. Our study focused on the microencapsulation of policosanol, the key active component of insect wax, which is a mixture of functional lipids secreted by the Ericerus pela (Chavannes). We developed two innovative policosanol products, microcapsules, and effervescent tablets, and optimized their preparation conditions. We successfully prepared microcapsules containing insect wax-derived policosanol using the spray-drying method. We achieved 92.09% microencapsulation efficiency and 61.67% powder yield under the following conditions: maltodextrin, starch sodium octenyl succinate, and (2-hydroxy)propyl-ß-cyclodextrin (HPßCD) at a ratio of 1:1:1, core-to-wall materials at a ratio of 1:10, 15% solid content, spray dryer feed temperature at 60 °C, inlet air temperature at 140 °C, and hot-air flow rate at 0.5 m3/min. The microcapsules exhibited a regular spherical shape with a minimal water content (1.82%) and rapid dispersion in water (within 143.5 s). These microcapsules released policosanol rapidly in simulated stomach fluid. Moreover, effervescent tablets were prepared using the policosanol-containing microcapsules. The tablets showed low friability (0.32%), quick disintegration in water (within 99.5 s), and high bubble volume. The microcapsules and effervescent tablets developed in this study presented effective solutions to the insolubility of policosanol in water. These products were portable and offered customizable tastes to address the psychological discomfort related to insect-based foods, thus providing a novel strategy for the consumption and secondary processing of insect lipids.

3.
Front Nutr ; 9: 1012207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407512

RESUMO

Tannic acid (TA) has received widespread attention for its beneficial biological function with antioxidant capacity. This study investigated the protective role of TA on the intestinal antioxidant capacity and intestinal barrier in weaned piglets and porcine intestinal epithelial cells (IPEC-J2). A total of 18 weaned piglets were randomly allocated into two groups (n = 9) and fed with a basal diet (control, CON) and a basal diet containing 1,000 mg/kg TA for two weeks. The in vivo results showed that treatment with TA increased both glutathione peroxidase (GSH-PX) activity and the protein expression of ZO-1 in the jejunum of weaned piglets, and reduced the level of malondialdehyde (MDA) in the serum and the mRNA and protein expression of Keap1 in the jejunum of weaned piglets. Furthermore, in vitro results indicated that TA treatment effectively alleviated tert-butyl hydroperoxide (TBH)-induced oxidative stress in IPEC-J2 cells, improved the antioxidant capacity by elevating the cell redox state and activating the Nrf2 pathway, and improved the intestinal barrier by upregulating the mRNA and protein expression of intestinal tight junction proteins and increasing the transepithelial electrical resistance (TEER) value. In conclusion, these results confirmed that TA relieves oxidative injury and improves intestinal barrier function and intestinal antioxidant capacity by activating the Nrf2 signaling pathway. These findings suggest that TA has the potential application in alleviating oxidative stress in the intestine of weaned piglets.

4.
Animals (Basel) ; 11(11)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34828054

RESUMO

This study evaluated the effects of dietary gallic acid (GA) on growth performance, diarrhea incidence and plasma antioxidant status of weaned piglets regardless of whether weaning weight was high or low. A total of 120 weaned piglets were randomly allocated to four treatments in a 42-day experiment with a 2 × 2 factorial treatment arrangement comparing different weaning weights (high weight (HW) or low weight (LW), 8.49 ± 0.18 kg vs. 5.45 ± 0.13 kg) and dietary treatment (without supplementation (CT) or with supplementation of 400 mg/kg of GA). The results showed that HW piglets exhibited better growth performance and plasma antioxidant capacity. Piglets supplemented with GA had higher body weight (BW) on day 42 and average daily gain (ADG) from day 0 to 42 compared to the control piglets, which is mainly attributed to the specific improvement on BW and ADG of LW piglets by the supplementation of GA. The decreased values of diarrhea incidence were seen in piglets fed GA, more particularly in LW piglets. In addition, dietary GA numerically reduced malondialdehyde (MDA) content in plasma of LW piglets. In conclusion, our study suggests that dietary GA may especially improve the growth and health in LW weaned piglets.

5.
J Anim Sci ; 98(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32255185

RESUMO

Antibiotics are commonly overused to reduce weaning stress that leads to economic loss in swine production. As potential substitutes of antibiotics, plant extracts have attracted the attention of researchers. However, one of the plant extracts, tannic acid (TA), has an adverse effect on the growth performance, palatability, and intestinal absorption in weaning piglets when used at a large amount. Thus, this study aimed to investigate the effects of a proper dose of microencapsulated TA on the growth performance, organ and intestinal development, intestinal morphology, intestinal nutrient transporters, and colonic microbiota in weaning piglets. Forty-five Duroc × [Landrace × Yorkshire] (initial body weight = 5.99 ± 0.13 kg, weaned days = 21 d) piglets were randomly divided into five treatment groups (n = 9) and raised in 14 d. The piglets in the control group were raised on a basal diet; the piglets in the antibiotic test group were raised on a basal diet with three antibiotics (375 mg/kg Chlortetracycline 20%, 500 mg/kg Enramycin 4%, 1,500 mg/kg Oxytetracycline calcium 20%); and the other three groups were raised on a basal diet with three doses of microencapsulated TA (TA1, 500 mg/kg; TA2, 1,000 mg/kg; TA3, 1,500 mg/kg). All the piglets were raised in the same environment and given the same amount of nutrients for 2 wk. The results showed that both TA1 and TA2 groups had no adverse effect on the growth performance, organ weight and intestinal growth, and the pH value of gastrointestinal content. TA2 treatment improved the duodenal morphology (P < 0.05), increased the gene expression level of solute carrier family 6, member 19 and solute carrier family 15, member 1 (P < 0.05) in the ileum, and modulated the colonic bacteria composition (P < 0.05), but inhibited the activity of maltase in the ileum (P < 0.05) and the jejunal gene expression level of solute carrier family 5, member 1 (P < 0.05). In conclusion, our study suggests that a dosage between 500 and 1,000 mg/kg of microencapsulated TA is safe to be included in the swine diet and that 1,000 mg/kg of microencapsulated TA has beneficial effects on intestinal morphology, intestinal nutrient transporter, and intestinal microbiota in weaning piglets. These findings provide new insights into suitable alternatives to antibiotics for improving growth performance and colonic microbiota.


Assuntos
Suplementos Nutricionais/análise , Microbioma Gastrointestinal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Suínos/fisiologia , Taninos/farmacologia , Animais , Dieta/veterinária , Composição de Medicamentos/veterinária , Feminino , Absorção Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Masculino , Extratos Vegetais/química , Suínos/crescimento & desenvolvimento , Suínos/microbiologia , Desmame
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa