Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(21): e202401973, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38520059

RESUMO

The inherently huge volume expansion during Li uptake has hindered the use of Si-based anodes in high-energy lithium-ion batteries. While some pore-forming and nano-architecting strategies show promises to effectively buffer the volume change, other parameters essential for practical electrode fabrication, such as compaction density, are often compromised. Here we propose a new in situ Mg doping strategy to form closed-nanopore structure into a micron-sized SiOx particle at a high bulk density. The doped Mg atoms promote the segregation of O, so that high-density magnesium silicates form to generate closed nanopores. By altering the mass content of Mg dopant, the average radii (ranged from 5.4 to 9.7 nm) and porosities (ranged from 1.4 % to 15.9 %) of the closed pores are precisely adjustable, which accounts for volume expansion of SiOx from 77.8 % to 22.2 % at the minimum. Benefited from the small volume variation, the Mg-doped micron-SiOx anode demonstrates improved Li storage performance towards realization of a 700-(dis)charge-cycle, 11-Ah-pouch-type cell at a capacity retention of >80 %. This work offers insights into reasonable design of the internal structure of micron-sized SiOx and other materials that undergo conversion or alloying reactions with drastic volume change, to enable high-energy batteries with stable electrochemistry.

2.
Angew Chem Int Ed Engl ; 62(33): e202305988, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37339945

RESUMO

Ether solvents with superior reductive stability promise excellent interphasial stability with high-capacity anodes while the limited oxidative resistance hinders their high-voltage operation. Extending the intrinsic electrochemical stability of ether-based electrolytes to construct stable-cycling high-energy-density lithium-ion batteries is challenging but rewarding. Herein, the anion-solvent interactions were concerned as the key point to optimize the anodic stability of the ether-based electrolytes and an optimized interphase was realized on both pure-SiOx anodes and LiNi0.8 Mn0.1 Co0.1 O2 cathodes. Specifically, the small-anion-size LiNO3 and tetrahydrofuran with high dipole moment to dielectric constant ratio realized strengthened anion-solvent interactions, which enhance the oxidative stability of the electrolyte. The designed ether-based electrolyte enabled a stable cycling performance over 500 cycles in pure-SiOx ||LiNi0.8 Mn0.1 Co0.1 O2 full cell, demonstrating its superior practical prospects. This work provides new insight into the design of new electrolytes for emerging high-energy density lithium-ion batteries through the regulation of interactions between species in electrolytes.

3.
Polymers (Basel) ; 14(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956577

RESUMO

The strong hygroscopicity of wood greatly shortens its service life. Here, a simple impregnation modification approach was used to construct superhydrophobic silicone resin coatings on wood surfaces. Briefly, with hydrofluorosilicone oil (HFSO), tetramethyl tetravinyl cyclotetrasiloxane (V4), and hydrophobic SiO2 from industrial production as raw materials, superhydrophobic wood samples (water contact angle ~160.8°, sliding angle ~3.6°) can be obtained by simply dipping the wood in the HFSO/V4/SiO2 modifier solutions. As a result, the superhydrophobic silicone resin coating constructed on the wood surface still has good water repellency after finger touching, tape peeling, and sandpaper abrasion. When the mass ratio of HFSO to V4 is 2:1, the water absorption of the resulting wood after soaking in water for 24 h is only 29.2%. Further, the resulting superhydrophobic wood shows excellent anti-fouling properties. Finally, we believe that the impregnation modification method proposed in this study can be applied to the protection of cellulose substrates.

4.
Polymers (Basel) ; 14(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35631836

RESUMO

Building superhydrophobic protective layers on the wood substrates is promising in terms of endowing them with multiple functions, including water-repellent, self-cleaning, anti-icing functions. In this study, multifunctional superhydrophobic wood was successfully fabricated by introducing SiO2 sol and superhydrophobic powder (PMHOS). The SiO2 sol was prepared using tetraethoxysilane as a precursor and ethanol was used as the dispersant. The PMHOS was synthesized using poly(methylhydrogen)siloxane (PMHS) and ethanol. As a result, the obtained superhydrophobic wood had a water contact angle (WCA) of 156° and a sliding angle (SA) of 6° at room temperature. The obtained superhydrophobic wood exhibited excellent repellency toward common liquid (milk, soy sauce, juice, and coffee). The superhydrophobic layer on the wood surface also exhibited good durability after a series of mechanical damages, including finger wiping, tape peeling, knife scratching, and sandpaper abrasion. In addition, the obtained superhydrophobic wood showed excellent anti-icing properties.

5.
Polymers (Basel) ; 11(6)2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163595

RESUMO

Poor compatibility between nanocellulose crystals (NCCs) and major polymers has limited the application of NCC as bio-reinforcements. In this work, an effective and ultra-fast method was investigated to significantly improve the hydrophobicity of NCC by using poly(methylhydrogen)siloxane (PMHS) as modifier. PMHS possessed amounts of reactive -Si-H groups and hydrophobic -CH3 groups. The former groups were reactive with the hydroxyl groups of NCC, while the latter groups afforded NCC very low surface energy. As the weight ratio of PMHS to NCC was only 0.0005%, the hydrophobicity of NCC was significantly improved by increasing the water contact angle of NCC from 0° to 134°. The effect of weight ratio of PMHS to NCC and the hydrogen content of -Si-H in PMHS on the hydrophobicity and thermal stability was investigated in detail by Fourier transform infrared spectroscopy (FTIR), (X-ray Diffraction) XRD and (thermogravimetric analysis) TGA. The results indicated that PMHS chains were covalently grafted onto NCC and PMHS modification improved the thermal stability of NCC.

6.
Polymers (Basel) ; 10(9)2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30960960

RESUMO

Dodecyltrimethoxysilane (DTMOS), which is a silanation modifier, was grafted onto nanocellulose crystals (NCC) through a two-step method using KH560 (ɤ-(2,3-epoxyproxy)propytrimethoxysilane) as a linker to improve the hydrophobicity of NCC. The reaction mechanism of NCC with KH560 and DTMOS and its surface chemical characteristics were investigated using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and HCl⁻acetone titration. These analyses confirmed that KH560 was grafted onto the surface of NCC through the ring-opening reaction, before DTMOS was covalently grafted onto the surface of NCC using KH560 as a linker. The grafting of NCC with DTMOS resulted in an improvement in its hydrophobicity due to an increase in its water contact angle from 0° to about 140°. In addition, the modified NCC also possessed enhanced thermal stability.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa