Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 28(20): 30015-30034, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33114888

RESUMO

As the reference radiometric calibration standard of sensors on the Haiyang-1C (HY-1C) satellite platform, the satellite calibration spectrometer (SCS) is equipped with an onboard calibration system composed of double solar diffusers and an erbium-doped diffuser to monitor the postlaunch radiometric response change. Herein, through onboard calibration data analysis, the calibration diffuser performance remains stable without degradation, and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra is adopted as a reference to repeatedly verify onboard radiometric calibration results by selecting different dates and reflectance scenes. The SCS equivalent reflectance is obtained by combining the mean digital number (DN) of the SCS crossing area image with the radiometric calibration coefficient. The spectral reflectance is obtained via interpolation and iteration, which is adopted as the actual MODIS incident pupil spectral reflectance because the small imaging time interval can be ignored and almost vertically observed, and it is convoluted with the MODIS spectral response function to obtain the predicted equivalent reflectance. Validation is completed by comparing the predicted MODIS equivalent reflectance to the measured value based on the onboard calibration coefficient. The results show that (1) the difference between the measured and predicted MODIS band equivalent reflectance is between -0.00466 and 0.0039, and (2) the percentage difference between the measured and predicted MODIS band equivalent reflectance ranges from 4.17% and 1.24%, indicating that the calibration system carried on HY-1C can perform high-precision SCS radiometric calibration, meeting the cross-calibration accuracy requirements of other loads on the same platform.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(3): 811-6, 2016 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-27400529

RESUMO

The multispectral remote sensing technology has been a primary means in the research of biomass monitoring, climate change, disaster prediction and etc. The spectral sensitivity is essential in the quantitative analysis of remote sensing data. When the sensor is running in the space, it will be influenced by cosmic radiation, severe change of temperature, chemical molecular contamination, cosmic dust and etc. As a result, the spectral sensitivity will degrade by time, which has great implication on the accuracy and consistency of the physical measurements. This paper presents a characterization method of the degradation based on man-made spectral targets. Firstly, a degradation model is established in the paper. Then, combined with equivalent reflectance of spectral targets measured and inverted from image, the degradation characterization can be achieved. The simulation and on orbit experiment results showed that, using the proposed method, the change of center wavelength and band width can be monotored. The method proposed in the paper has great significance for improving the accuracy of long time series remote sensing data product and comprehensive utilization level of multi sensor data products.


Assuntos
Tecnologia de Sensoriamento Remoto , Análise Espectral , Biomassa , Mudança Climática , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa