Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 643
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(22): e2402911121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38776366

RESUMO

Leaf yellowing is a well-known phenotype that attracts phloem-feeding insects. However, it remains unclear how insect-vectored plant pathogens induce host leaf yellowing to facilitate their own transmission by insect vectors. Here, we report that an effector protein secreted by rice orange leaf phytoplasma (ROLP) inhibits chlorophyll biosynthesis and induces leaf yellowing to attract leafhopper vectors, thereby presumably promoting pathogen transmission. This effector, designated secreted ROLP protein 1 (SRP1), first secreted into rice phloem by ROLP, was subsequently translocated to chloroplasts by interacting with the chloroplastic glutamine synthetase (GS2). The direct interaction between SRP1 and GS2 disrupts the decamer formation of the GS2 holoenzyme, attenuating its enzymatic activity, thereby suppressing the synthesis of chlorophyll precursors glutamate and glutamine. Transgenic expression of SRP1 in rice plants decreased GS2 activity and chlorophyll precursor accumulation, finally inducing leaf yellowing. This process is correlated with the previous evidence that the knockout of GS2 expression in rice plants causes a similar yellow chlorosis phenotype. Consistently, these yellowing leaves attracted higher numbers of leafhopper vectors, caused the vectors to probe more frequently, and presumably facilitate more efficient phytoplasma transmission. Together, these results uncover the mechanism used by phytoplasmas to manipulate the leaf color of infected plants for the purpose of enhancing attractiveness to insect vectors.


Assuntos
Cloroplastos , Glutamato-Amônia Ligase , Hemípteros , Insetos Vetores , Oryza , Phytoplasma , Folhas de Planta , Animais , Hemípteros/microbiologia , Glutamato-Amônia Ligase/metabolismo , Glutamato-Amônia Ligase/genética , Phytoplasma/fisiologia , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Oryza/microbiologia , Oryza/genética , Insetos Vetores/microbiologia , Cloroplastos/metabolismo , Doenças das Plantas/microbiologia , Clorofila/metabolismo , Plantas Geneticamente Modificadas , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
2.
PLoS Genet ; 20(1): e1011037, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38206971

RESUMO

Explicitly sharing individual level data in genomics studies has many merits comparing to sharing summary statistics, including more strict QCs, common statistical analyses, relative identification and improved statistical power in GWAS, but it is hampered by privacy or ethical constraints. In this study, we developed encG-reg, a regression approach that can detect relatives of various degrees based on encrypted genomic data, which is immune of ethical constraints. The encryption properties of encG-reg are based on the random matrix theory by masking the original genotypic matrix without sacrificing precision of individual-level genotype data. We established a connection between the dimension of a random matrix, which masked genotype matrices, and the required precision of a study for encrypted genotype data. encG-reg has false positive and false negative rates equivalent to sharing original individual level data, and is computationally efficient when searching relatives. We split the UK Biobank into their respective centers, and then encrypted the genotype data. We observed that the relatives estimated using encG-reg was equivalently accurate with the estimation by KING, which is a widely used software but requires original genotype data. In a more complex application, we launched a finely devised multi-center collaboration across 5 research institutes in China, covering 9 cohorts of 54,092 GWAS samples. encG-reg again identified true relatives existing across the cohorts with even different ethnic backgrounds and genotypic qualities. Our study clearly demonstrates that encrypted genomic data can be used for data sharing without loss of information or data sharing barrier.


Assuntos
Estudo de Associação Genômica Ampla , Privacidade , Humanos , Estudo de Associação Genômica Ampla/métodos , Genótipo , Software , Genômica
3.
PLoS Pathog ; 20(6): e1012318, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38865374

RESUMO

Many plant arboviruses are persistently transmitted by piercing-sucking insect vectors. However, it remains largely unknown how conserved insect Toll immune response exerts antiviral activity and how plant viruses antagonize it to facilitate persistent viral transmission. Here, we discover that southern rice black-streaked dwarf virus (SRBSDV), a devastating planthopper-transmitted rice reovirus, activates the upstream Toll receptors expression but suppresses the downstream MyD88-Dorsal-defensin cascade, resulting in the attenuation of insect Toll immune response. Toll pathway-induced the small antibacterial peptide defensin directly interacts with viral major outer capsid protein P10 and thus binds to viral particles, finally blocking effective viral infection in planthopper vector. Furthermore, viral tubular protein P7-1 directly interacts with and promotes RING E3 ubiquitin ligase-mediated ubiquitinated degradation of Toll pathway adaptor protein MyD88 through the 26 proteasome pathway, finally suppressing antiviral defensin production. This virus-mediated attenuation of Toll antiviral immune response to express antiviral defensin ensures persistent virus infection without causing evident fitness costs for the insects. E3 ubiquitin ligase also is directly involved in the assembly of virus-induced tubules constructed by P7-1 to facilitate viral spread in planthopper vector, thereby acting as a pro-viral factor. Together, we uncover a previously unknown mechanism used by plant arboviruses to suppress Toll immune response through the ubiquitinated degradation of the conserved adaptor protein MyD88, thereby facilitating the coexistence of arboviruses with their vectors in nature.


Assuntos
Arbovírus , Insetos Vetores , Transdução de Sinais , Receptores Toll-Like , Animais , Arbovírus/imunologia , Receptores Toll-Like/metabolismo , Insetos Vetores/virologia , Insetos Vetores/imunologia , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Reoviridae/fisiologia , Reoviridae/imunologia , Hemípteros/virologia , Hemípteros/imunologia , Oryza/virologia , Oryza/imunologia , Proteínas de Insetos/metabolismo , Imunidade Inata
4.
PLoS Pathog ; 20(3): e1012129, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38547321

RESUMO

We recently identified two virulence-associated small open reading frames (sORF) of Yersinia pestis, named yp1 and yp2, and null mutants of each individual genes were highly attenuated in virulence. Plague vaccine strain EV76 is known for strong reactogenicity, making it not suitable for use in humans. To improve the immune safety of EV76, three mutant strains of EV76, Δyp1, Δyp2, and Δyp1&yp2 were constructed and their virulence attenuation, immunogenicity, and protective efficacy in mice were evaluated. All mutant strains were attenuated by the subcutaneous (s.c.) route and exhibited more rapid clearance in tissues than the parental strain EV76. Under iron overload conditions, only the mice infected with EV76Δyp1 survived, accompanied by less draining lymph nodes damage than those infected by EV76. Analysis of cytokines secreted by splenocytes of immunized mice found that EV76Δyp2 induced higher secretion of multiple cytokines including TNF-α, IL-2, and IL-12p70 than EV76. On day 42, EV76Δyp2 or EV76Δyp1&yp2 immunized mice exhibited similar protective efficacy as EV76 when exposed to Y. pestis 201, both via s.c. or intranasal (i.n.) routes of administration. Moreover, when exposed to 200-400 LD50 Y. pestis strain 201Δcaf1 (non-encapsulated Y. pestis), EV76Δyp2 or EV76Δyp1&yp2 are able to afford about 50% protection to i.n. challenges, significantly better than the protection afforded by EV76. On 120 day, mice immunized with EV76Δyp2 or EV76Δyp1&yp2 cleared the i.n. challenge of Y. pestis 201-lux as quickly as those immunized with EV76, demonstrating 90-100% protection. Our results demonstrated that deletion of the yp2 gene is an effective strategy to attenuate virulence of Y. pestis EV76 while improving immunogenicity. Furthermore, EV76Δyp2 is a promising candidate for conferring protection against the pneumonic and bubonic forms of plague.


Assuntos
Vacina contra a Peste , Vacinas , Yersinia pestis , Humanos , Animais , Camundongos , Yersinia pestis/genética , Fases de Leitura Aberta , Vacina contra a Peste/genética , Citocinas/genética
5.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38205966

RESUMO

Multi-omics data integration is a complex and challenging task in biomedical research. Consensus clustering, also known as meta-clustering or cluster ensembles, has become an increasingly popular downstream tool for phenotyping and endotyping using multiple omics and clinical data. However, current consensus clustering methods typically rely on ensembling clustering outputs with similar sample coverages (mathematical replicates), which may not reflect real-world data with varying sample coverages (biological replicates). To address this issue, we propose a new consensus clustering with missing labels (ccml) strategy termed ccml, an R protocol for two-step consensus clustering that can handle unequal missing labels (i.e. multiple predictive labels with different sample coverages). Initially, the regular consensus weights are adjusted (normalized) by sample coverage, then a regular consensus clustering is performed to predict the optimal final cluster. We applied the ccml method to predict molecularly distinct groups based on 9-omics integration in the Karolinska COSMIC cohort, which investigates chronic obstructive pulmonary disease, and 24-omics handprint integrative subgrouping of adult asthma patients of the U-BIOPRED cohort. We propose ccml as a downstream toolkit for multi-omics integration analysis algorithms such as Similarity Network Fusion and robust clustering of clinical data to overcome the limitations posed by missing data, which is inevitable in human cohorts consisting of multiple data modalities. The ccml tool is available in the R language (https://CRAN.R-project.org/package=ccml, https://github.com/pulmonomics-lab/ccml, or https://github.com/ZhoulabCPH/ccml).


Assuntos
Asma , Multiômica , Adulto , Humanos , Consenso , Análise por Conglomerados , Algoritmos , Asma/genética
6.
Plant Physiol ; 195(1): 728-744, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38394457

RESUMO

Chlorophyll degradation and carotenoid biosynthesis, which occur almost simultaneously during fruit ripening, are essential for the coloration and nutritional value of fruits. However, the synergistic regulation of these 2 processes at the transcriptional level remains largely unknown. In this study, we identified a WRKY transcription factor, CrWRKY42, from the transcriptome data of the yellowish bud mutant "Jinlegan" ([Citrus unshiu × C. sinensis] × C. reticulata) tangor and its wild-type "Shiranui" tangor, which was involved in the transcriptional regulation of both chlorophyll degradation and carotenoid biosynthesis pathways. CrWRKY42 directly bound to the promoter of ß-carotene hydroxylase 1 (CrBCH1) and activated its expression. The overexpression and interference of CrWRKY42 in citrus calli demonstrated that CrWRKY42 promoted carotenoid accumulation by inducing the expression of multiple carotenoid biosynthetic genes. Further assays confirmed that CrWRKY42 also directly bound to and activated the promoters of the genes involved in carotenoid biosynthesis, including phytoene desaturase (CrPDS) and lycopene ß-cyclase 2 (CrLCYB2). In addition, CrWRKY42 could bind to the promoters of NONYELLOW COLORING (CrNYC) and STAY-GREEN (CrSGR) and activate their expression, thus promoting chlorophyll degradation. The overexpression and silencing of CrWRKY42 in citrus fruits indicated that CrWRKY42 positively regulated chlorophyll degradation and carotenoid biosynthesis by synergistically activating the expression of genes involved in both pathways. Our data revealed that CrWRKY42 acts as a positive regulator of chlorophyll degradation and carotenoid biosynthesis to alter the conversion of citrus fruit color. Our findings provide insight into the complex transcriptional regulation of chlorophyll and carotenoid metabolism during fruit ripening.


Assuntos
Carotenoides , Clorofila , Citrus , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Carotenoides/metabolismo , Citrus/genética , Citrus/metabolismo , Clorofila/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Frutas/genética , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Regiões Promotoras Genéticas/genética
7.
Nucleic Acids Res ; 51(D1): D861-D869, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36243976

RESUMO

During the complex process of tumour development, the unique destiny of cells is driven by the fine-tuning of multilevel features such as gene expression, network regulation and pathway activation. The dynamic formation of the tumour microenvironment influences the therapeutic response and clinical outcome. Thus, characterizing the developmental landscape and identifying driver features at multiple levels will help us understand the pathological development of disease in individual cell populations and further contribute to precision medicine. Here, we describe a database, CellTracer (http://bio-bigdata.hrbmu.edu.cn/CellTracer), which aims to dissect the causative multilevel interplay contributing to cell development trajectories. CellTracer consists of the gene expression profiles of 1 941 552 cells from 222 single-cell datasets and provides the development trajectories of different cell populations exhibiting diverse behaviours. By using CellTracer, users can explore the significant alterations in molecular events and causative multilevel crosstalk among genes, biological contexts, cell characteristics and clinical treatments along distinct cell development trajectories. CellTracer also provides 12 flexible tools to retrieve and analyse gene expression, cell cluster distribution, cell development trajectories, cell-state variations and their relationship under different conditions. Collectively, CellTracer will provide comprehensive insights for investigating the causative multilevel interplay contributing to cell development trajectories and serve as a foundational resource for biomarker discovery and therapeutic exploration within the tumour microenvironment.


Assuntos
Linhagem da Célula , Bases de Dados Factuais , Humanos , Bases de Dados Genéticas , Neoplasias/genética , Transcriptoma , Microambiente Tumoral/genética , Análise de Célula Única
8.
BMC Genomics ; 25(1): 17, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166615

RESUMO

BACKGROUND: Specific pathogen-free ducks are a valuable laboratory resource for waterfowl disease research and poultry vaccine development. High throughput sequencing allows the systematic identification of structural variants in genomes. Copy number variation (CNV) can explain the variation of important duck genetic traits. Herein, the genome-wide CNVs of the three experimental duck species in China (Jinding ducks (JD), Shaoxing ducks (SX), and Fujian Shanma ducks (SM)) were characterized using resequencing to determine their genetic characteristics and selection signatures. RESULTS: We obtained 4,810 CNV regions (CNVRs) by merging 73,012 CNVs, covering 4.2% of the duck genome. Functional analysis revealed that the shared CNVR-harbored genes were significantly enriched for 31 gene ontology terms and 16 Kyoto Encyclopedia of Genes and Genomes pathways (e.g., olfactory transduction and immune system). Based on the genome-wide fixation index for each CNVR, growth (SPAG17 and PTH1R), disease resistance (CATHL3 and DMBT1), and thermoregulation (TRPC4 and SLIT3) candidate genes were identified in strongly selected signatures specific to JD, SM, and SX, respectively. CONCLUSIONS: In conclusion, we investigated the genome-wide distribution of experimental duck CNVs, providing a reference to establish the genetic basis of different phenotypic traits, thus contributing to the management of experimental animal genetic resources.


Assuntos
Variações do Número de Cópias de DNA , Patos , Animais , Patos/genética , Genoma , Análise de Sequência de DNA , Fenótipo , Polimorfismo de Nucleotídeo Único
9.
Small ; : e2402410, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38766970

RESUMO

Lead-free halide perovskites as a new kind of potential candidate for photocatalytic organic synthesis have attracted much attention recently. The rational heterojunction construction is regarded as an efficient strategy to delicately regulate their catalytic performances. Herein, a semi-conductive covalent organic framework (COF) nanosheet, C4N, is employed as the functional component to construct Cs2AgBiCl6/C4N (CABC/C4N) heterojunction. It is found that the C4N nanosheets with rich surface functional groups can serve as heterogeneous nucleation sites to manipulate the growth of CABC nanocrystals and afford close contact between each other, therefore facilitate the transfer and spatial separation of photogenerated charge carriers, as verified by in situ X-ray photoelectronic spectroscopy and Kelvin probe force microscopy. Moreover, the oxygen affinity of C4N endows the heterojunctions with outstanding aerobic reactivity, thus improving the photocatalytic performance largely. The optimal CABC/C4N heterojunction delivers a thioanisole conversion efficiency of 100% after 6 h, which is 2.2 and 7.7-fold of that of CABC and C4N. This work provides a new ideal for the design and application of lead-free perovskite heterojunction photocatalysts for organic reactions.

10.
J Transl Med ; 22(1): 475, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764033

RESUMO

PURPOSE: To analyze the role of and mechanism underlying obstructive sleep apnea (OSA)-derived exosomes in inducing non-alcoholic fatty liver (NAFLD). METHODS: The role of OSA-derived exosomes was analyzed in inducing hepatocyte fat accumulation in mice models both in vivo and in vitro. RESULTS: OSA-derived exosomes caused fat accumulation and macrophage activation in the liver tissue. These exosomes promoted fat accumulation; steatosis was more noticeable in the presence of macrophages. Macrophages could internalize OSA-derived exosomes, which promoted macrophage polarization to the M1 type. Moreover, it inhibited sirtuin-3 (SIRT3)/AMP-activated protein kinase (AMPK) and autophagy and promoted the activation of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasomes. The use of 3-methyladenine (3-MA) to inhibit autophagy blocked NLRP3 inflammasome activation and inhibited the M1 polarization of macrophages. miR-421 targeting inhibited SIRT3 protein expression in the macrophages. miR-421 was significantly increased in OSA-derived exosomes. Additionally, miR-421 levels were increased in OSA + NAFLD mice- and patient-derived exosomes. In the liver tissues of OSA and OSA + NAFLD mice, miR-421 displayed similar co-localization with the macrophages. Intermittent hypoxia-induced hepatocytes deliver miR-421 to the macrophages via exosomes to inhibit SIRT3, thereby participating in macrophage M1 polarization. After OSA and NAFLD modeling in miR-421-/- mice, liver steatosis and M1 polarization were significantly reduced. Additionally, in the case of miR-421 knockout, the inhibitory effects of OSA-derived exosomes on SIRT3 and autophagy were significantly alleviated. Furthermore, their effects on liver steatosis and macrophage M1 polarization were significantly reduced. CONCLUSIONS: OSA promotes the delivery of miR-421 from the hepatocytes to macrophages. Additionally, it promotes M1 polarization by regulating the SIRT3/AMPK-autophagy pathway, thereby causing NAFLD.


Assuntos
Autofagia , Polaridade Celular , Exossomos , Macrófagos , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Sirtuína 3 , Apneia Obstrutiva do Sono , Animais , Humanos , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Sequência de Bases , Exossomos/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Inflamassomos/metabolismo , Fígado/patologia , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , MicroRNAs/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Sirtuína 3/metabolismo , Sirtuína 3/genética , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/metabolismo
11.
Plant Physiol ; 193(1): 519-536, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37224514

RESUMO

Citrus, 1 of the largest fruit crops with global economic and nutritional importance, contains fruit known as hesperidium with unique morphological types. Citrus fruit ripening is accompanied by chlorophyll degradation and carotenoid biosynthesis, which are indispensably linked to color formation and the external appearance of citrus fruits. However, the transcriptional coordination of these metabolites during citrus fruit ripening remains unknown. Here, we identified the MADS-box transcription factor CsMADS3 in Citrus hesperidium that coordinates chlorophyll and carotenoid pools during fruit ripening. CsMADS3 is a nucleus-localized transcriptional activator, and its expression is induced during fruit development and coloration. Overexpression of CsMADS3 in citrus calli, tomato (Solanum lycopersicum), and citrus fruits enhanced carotenoid biosynthesis and upregulated carotenogenic genes while accelerating chlorophyll degradation and upregulating chlorophyll degradation genes. Conversely, the interference of CsMADS3 expression in citrus calli and fruits inhibited carotenoid biosynthesis and chlorophyll degradation and downregulated the transcription of related genes. Further assays confirmed that CsMADS3 directly binds and activates the promoters of phytoene synthase 1 (CsPSY1) and chromoplast-specific lycopene ß-cyclase (CsLCYb2), 2 key genes in the carotenoid biosynthetic pathway, and STAY-GREEN (CsSGR), a critical chlorophyll degradation gene, which explained the expression alterations of CsPSY1, CsLCYb2, and CsSGR in the above transgenic lines. These findings reveal the transcriptional coordination of chlorophyll and carotenoid pools in the unique hesperidium of Citrus and may contribute to citrus crop improvement.


Assuntos
Citrus , Solanum lycopersicum , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Citrus/genética , Citrus/metabolismo , Clorofila/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Carotenoides/metabolismo , Solanum lycopersicum/genética , Frutas/metabolismo
12.
Chemistry ; : e202400276, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38757422

RESUMO

A hydrophobic Ni-PTFE modified electrode has been prepared by constant current and cathodic electroplating with a nickel sheet as substrate in a PTFE suspension. Then the Ni-PTFE modified electrode was used for electroreduction from aromatic amide to diarylimide. The electrochemical characterizations such as cyclic voltammogram, EIS, polarization curves, and electrode stability have been carried out by electrochemical workstation. The structure of the electroreduction product diarylimide was characterized by 1H NMR, FT-IR, MS(Mass Spectrum), and EA(Elemental Analyzer). Based on the hydrophobicity of the electrode, an approach suggested that the phenyl ketone radical may be formed by electroreductive deamination at the cathode. With the construction of C-N bond by the radical coupling, the electrocatalytic reduction may be comprised of a one-electron process including an ECC (Electrochemical-Chemical-Chemical) process. The electroreduction of aromatic amide to diarylimide may be controlled by both charge migration and concentration polarization. Electrocatalytic reduction of aromatic amides on Ni-PTFE modified electrodes is all well conversion ratio.

13.
J Neurooncol ; 167(2): 305-313, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38424338

RESUMO

PURPOSE: Currently, there remains a scarcity of established preoperative tests to accurately predict the isocitrate dehydrogenase (IDH) mutation status in clinical scenarios, with limited research has explored the potential synergistic diagnostic performance among metabolite, perfusion, and diffusion parameters. To address this issue, we aimed to develop an imaging protocol that integrated 2-hydroxyglutarate (2HG) magnetic resonance spectroscopy (MRS) and intravoxel incoherent motion (IVIM) by comprehensively assessing metabolic, cellular, and angiogenic changes caused by IDH mutations, and explored the diagnostic efficiency of this imaging protocol for predicting IDH mutation status in clinical scenarios. METHODS: Patients who met the inclusion criteria were categorized into two groups: IDH-wild type (IDH-WT) group and IDH-mutant (IDH-MT) group. Subsequently, we quantified the 2HG concentration, the relative apparent diffusion coefficient (rADC), the relative true diffusion coefficient value (rD), the relative pseudo-diffusion coefficient (rD*) and the relative perfusion fraction value (rf). Intergroup differences were estimated using t-test and Mann-Whitney U test. Finally, we performed receiver operating characteristic (ROC) curve and DeLong's test to evaluate and compare the diagnostic performance of individual parameters and their combinations. RESULTS: 64 patients (female, 21; male, 43; age, 47.0 ± 13.7 years) were enrolled. Compared with IDH-WT gliomas, IDH-MT gliomas had higher 2HG concentration, rADC and rD (P < 0.001), and lower rD* (P = 0.013). The ROC curve demonstrated that 2HG + rD + rD* exhibited the highest areas under curve (AUC) value (0.967, 95%CI 0.889-0.996) for discriminating IDH mutation status. Compared with each individual parameter, the predictive efficiency of 2HG + rADC + rD* and 2HG + rD + rD* shows a statistically significant enhancement (DeLong's test: P < 0.05). CONCLUSIONS: The integration of 2HG MRS and IVIM significantly improves the diagnostic efficiency for predicting IDH mutation status in clinical scenarios.


Assuntos
Neoplasias Encefálicas , Glioma , Glutaratos , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Estudos Retrospectivos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/diagnóstico , Glioma/genética , Glioma/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Mutação
14.
J Chem Inf Model ; 64(8): 3579-3591, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38545680

RESUMO

Exhausted T cells are a key component of immune cells that play a crucial role in the immune response against cancer and influence the efficacy of immunotherapy. Accurate assessment and measurement of T-cell exhaustion (TEX) are critical for understanding the heterogeneity of TEX in the tumor microenvironment (TME) and tailoring individualized immunotherapeutic strategies. In this study, we introduced DeepEpiTEX, a novel computational framework based on deep neural networks, for inferring the developmental hierarchy and functional states of exhausted T cells in the TME from epigenetic profiles. DeepEpiTEX was trained using various modalities of epigenetic data, including DNA methylation data, microRNA expression data, and long non-coding RNA expression data from 30 bulk solid cancer types in the TCGA pan-cancer cohort, and identified five optimal TEX subsets with significant survival differences across the majority of cancer types. The performance of DeepEpiTEX was further evaluated and validated in external multi-center and multi-type cancer cohorts, consistently demonstrating its generalizability and applicability in different experimental settings. In addition, we discovered the potential relationship between TEX subsets identified by DeepEpiTEX and the response to immune checkpoint blockade therapy, indicating that individuals with immune-favorable TEX subsets may experience the greatest benefits. In conclusion, our study sheds light on the role of epigenetic regulation in TEX and provides a powerful and promising tool for categorizing TEX in different disease settings.


Assuntos
Aprendizado Profundo , Epigênese Genética , Neoplasias , Linfócitos T , Humanos , Neoplasias/genética , Neoplasias/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/imunologia , Metilação de DNA , MicroRNAs/genética
15.
J Immunol ; 209(1): 145-156, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35623661

RESUMO

The identification of MHC class I-restricted CTL epitopes in certain species, particularly nonmammals, remains a challenge. In this study, we developed a four-step identification scheme and confirmed its efficiency by identifying the Anpl-UAA*76-restricted CTL epitopes of Tembusu virus (TMUV) in inbred haplotype ducks HBW/B4. First, the peptide binding motif of Anpl-UAA*76 was determined by random peptide library in de novo liquid chromatography-tandem mass spectrometry, a novel nonbiased, data-independent acquisition method that we previously established. Second, a total of 38 TMUV peptides matching the motif were screened from the viral proteome, among which 11 peptides were conserved across the different TMUV strains. Third, the conserved TMUV peptides were refolded in vitro with Anpl-UAA*76 and Anpl-ß2-microglobulin to verify the results from the previous two steps. To clarify the structural basis of the obtained motif, we resolved the crystal structure of Anpl-UAA*76 with the TMUV NS3 peptide LRKRQLTVL and found that Asp34 is critical for the preferential binding of the B pocket to bind the second residue to arginine as an anchor residue. Fourth, the immunogenicity of the conserved TMUV peptides was tested in vivo using specific pathogen-free HBW/B4 ducks immunized with the attenuated TMUV vaccine. All 11 conserved TMUV epitopes could bind stably to Anpl-UAA*76 in vitro and stimulate the secretion of IFN-γ and lymphocyte proliferation, and three conserved and one nonconserved peptides were selected to evaluate the CTL responses in vivo by flow cytometry and their tetramers. We believe that this new scheme could improve the identification of MHC class I-restricted CTL epitopes, and our data provide a foundation for further study on duck anti-TMUV CTL immunity.


Assuntos
Patos , Flavivirus , Animais , Epitopos , Peptídeos , Linfócitos T Citotóxicos
16.
Mol Biol Rep ; 51(1): 320, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393618

RESUMO

BACKGROUND: The aim of this study was to investigate whether ischemia/hypoxia conditions induce fatty acid transport from neurons to astrocytes and whether this mechanism is affected by ApoE isoforms. METHODS AND RESULTS: A neonatal rat model of hypoxic-ischemic brain damage was established. Excessive accumulation of lipid droplets and upregulation of ApoE expression occurred in the hippocampus and cerebral cortex after hypoxia-ischemia, which implied the occurrence of abnormal fatty acid metabolism. Lipid peroxidation was induced in an oxygen-glucose deprivation and reperfusion (OGDR) model of ApoE-/- primary neurons. The number of BODIPY 558/568 C12-positive particles (fatty acid markers) transferred from neurons to astrocytes was significantly increased with the addition of human recombinant ApoE compared with that in the OGDR group, which significantly increased the efficiency of fatty acid transport from neurons to astrocytes and neuronal viability. However, ApoE4 was found to be associated with lower efficiency in fatty acid transport and less protective effects in OGDR-induced neuronal cell death than both ApoE2 and ApoE3. COG133, an ApoE-mimetic peptide, partially compensated for the adverse effects of ApoE4. FABP5 and SOD1 gene and protein expression levels were upregulated in astrocytes treated with BODIPY 558/568 C12 particles. CONCLUSIONS: In conclusion, ApoE plays an important role in mediating the transport of fatty acids from neurons to astrocytes under ischemia/hypoxia conditions, and this transport mechanism is ApoE isoform dependent. ApoE4 has a low transfer efficiency and may be a potential target for the clinical treatment of neonatal hypoxic-ischemic encephalopathy.


Assuntos
Apolipoproteína E4 , Astrócitos , Compostos de Boro , Animais , Humanos , Ratos , Apolipoproteína E4/genética , Astrócitos/metabolismo , Proteínas de Ligação a Ácido Graxo , Ácidos Graxos/metabolismo , Hipóxia/metabolismo , Isquemia , Neurônios/metabolismo
17.
BMC Public Health ; 24(1): 953, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570765

RESUMO

OBJECTIVE: The diagnosis of hidden hearing loss (HHL) in calm state has not yet been determined, while the nutritional status is not involved in its pathogenic risk factors. In utero iron deficiency (ID) may delay auditory neural maturation in infants. We evaluated the association between ID and HHL as well as the modification effect of socioeconomic status (SES) on this association in newborns. STUDY DESIGN: We included 859 mother-newborns from the baseline of this observational northeast cohort. Data on exposure assessment included iron status [maternal hemoglobin (Hb) and neonatal heel prick serum ferritin (SF)] and SES (occupation, education and income). Auditory neural maturation was reflected by auditory brainstem response (ABR) testing and electrocochleography (ECochG). RESULTS: Iron status and SES were independently and jointly associated with the prediction of neonatal HHL by logistic and linear regression model. The mediation effects were performed by Process. ID increased absolute latency wave V, interpeak latency (IPL) III-V, and summting potentials (SP) /action potentials (AP), which were combined as HHL. Low SES showed the highest risk of HHL and the highest levels of related parameters in ID newborns. Moreover, after Corona Virus Disease 2019 (COVID-19) were positive, preschool children who experience ID in neonatal period were more likely to suffer from otitis media with effusion (OME). High SES also showed similar risk effects. CONCLUSION: Both low and high SES may strengthen the risk of ID on neonatal HHL in Northeast China.


Assuntos
Deficiências de Ferro , Mães , Lactente , Feminino , Pré-Escolar , Humanos , Recém-Nascido , Perda Auditiva Oculta , Ferro , Classe Social
18.
Arch Gynecol Obstet ; 309(5): 1787-1799, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38376520

RESUMO

BACKGROUND: Preimplantation genetic testing (PGT), also referred to as preimplantation genetic diagnosis (PGD), is an advanced reproductive technology used during in vitro fertilization (IVF) cycles to identify genetic abnormalities in embryos prior to their implantation. PGT is used to screen embryos for chromosomal abnormalities, monogenic disorders, and structural rearrangements. DEVELOPMENT OF PGT: Over the past few decades, PGT has undergone tremendous development, resulting in three primary forms: PGT-A, PGT-M, and PGT-SR. PGT-A is utilized for screening embryos for aneuploidies, PGT-M is used to detect disorders caused by a single gene, and PGT-SR is used to detect chromosomal abnormalities caused by structural rearrangements in the genome. PURPOSE OF REVIEW: In this review, we thoroughly summarized and reviewed PGT and discussed its pros and cons down to the minutest aspects. Additionally, recent studies that highlight the advancements of PGT in the current era, including their future perspectives, were reviewed. CONCLUSIONS: This comprehensive review aims to provide new insights into the understanding of techniques used in PGT, thereby contributing to the field of reproductive genetics.


Assuntos
Testes Genéticos , Diagnóstico Pré-Implantação , Gravidez , Feminino , Humanos , Testes Genéticos/métodos , Diagnóstico Pré-Implantação/métodos , Implantação do Embrião , Fertilização in vitro , Aneuploidia
19.
Plant J ; 112(4): 1084-1097, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36196616

RESUMO

As an important trait in crop breeding, plant height is associated with lodging resistance and yield. With the identification and cloning of several semi-dwarfing genes, increasing numbers of semi-dwarf cultivars have emerged, which has led to a 'green revolution' in rice (Oryza sativa) production. In this study, we identified a rice semi-dwarf mutant, semi-dwarf 38 (sd38), which showed significantly reduced cell length. SD38 encodes a fatty acid elongase, ß-ketoacyl-CoA synthase, which is involved in the synthesis of very-long-chain fatty acids (VLCFAs). Expression analysis showed that SD38 was localized on the membrane of the endoplasmic reticulum, and was expressed in all analyzed tissues with differential abundance. The mutation of SD38 affected lipid metabolism in the sd38 mutant. A functional complementarity test in Saccharomyces cerevisiae indicated that SD38 was capable of complementing the deficiency of ELO3p activity in BY4741-elo3 knockout yeast cells by participating in the synthesis of C24:0 VLCFA. Significant changes were observed in the expression of genes involved in ethylene synthesis, which resulted in reduced content of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in the sd38 mutant. Exogenously supplied VLCFA (C24:0) increased the expression levels of OsACS3, OsACS4, and OsACO7 and the plant height of sd38 mutant seedlings, similar to the effect of exogenous application of ACC and ethephon. These results reveal a relationship among VLCFAs, ethylene biosynthesis, and plant height and improve our understanding of plant height development in crops.


Assuntos
Oryza , Oryza/metabolismo , Melhoramento Vegetal , Etilenos/metabolismo , Fenótipo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas
20.
Proteins ; 91(8): 1065-1076, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36964928

RESUMO

In recent years, the development of bispecific antibodies (bsAbs) has become a major trend in the biopharmaceutical industry. By simultaneously engaging two molecular targets, bsAbs have exhibited unique mechanisms of action that could lead to clinical benefits unattainable by conventional monoclonal antibodies. The type of structure used to construct a bsAb directly influences the distance, angle, degree of freedom, and affinity between the two antibody binding sites and the interaction between the two antigens or the cells where the antigens are located, which have been bound by the antibody. Consequently, the structure of the bsAb is one of the most vital factors affecting its function. Herein, we reported for the first time a novel basic module bsAb format, VFV (Variable domain-Fab-Variable domain). And then, the feasibility of the VFV format was demonstrated by constructing a series of engager-like basic module bsAbs. Next, a series of VFV bsAbs containing Fc (VFV-Ig), Fab (VFV-Fab), or Hinge (VFV-Hinge) were developed based on Hxb module, and all of them had adequate purity and activity. Finally, a T cell engager bsAb with the potential to overcome on-target off-tumor activity was constructed according to the structural characteristics of VFV, which validated that the VFV module can be used as a new brick for the construction of various bsAbs. In a word, the successful construction of this bsAb format for the first time not only enriches the arsenal of the bsAb format, but also provides inspiration for the construction of new bsAbs. Nevertheless, we are fully aware that as a proof-of-concept study, this paper has many shortcomings, and there is still a lot of work to be done to determine whether VFV can serve as a platform for drug development.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Anticorpos Monoclonais , Sítios de Ligação de Anticorpos , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa