Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 46(4): 1157-1175, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36071575

RESUMO

Auxin is well known to stimulate coleoptile elongation and rapid seedling growth in the air. However, its role in regulating rice germination and seedling establishment under submergence is largely unknown. Previous studies revealed that excessive levels of indole-3-acetic acid(IAA) frequently cause the inhibition of plant growth and development. In this study, the high-level accumulation of endogenous IAA is observed under dark submergence, stimulating rice coleoptile elongation but limiting the root and primary leaf growth during anaerobic germination (AG). We found that oxygen and light can reduce IAA levels, promote the seedling establishment and enhance rice AG tolerance. miRNA microarray profiling and RNA gel blot analysis results show that the expression of miR167 is negatively regulated by submergence; it subsequently modulates the accumulation of free IAA through the miR167-ARF-GH3 pathway. The OsGH3-8 encodes an IAA-amido synthetase that functions to prevent free IAA accumulation. Reduced miR167 levels or overexpressing OsGH3-8 increase auxin metabolism, reduce endogenous levels of free IAA and enhance rice AG tolerance. Our studies reveal that poor seed germination and seedling growth inhibition resulting from excessive IAA accumulation would cause intolerance to submergence in rice, suggesting that a certain threshold level of auxin is essential for rice AG tolerance.


Assuntos
Germinação , Oryza , Plântula/metabolismo , Oryza/genética , Anaerobiose , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Vet Res ; 54(1): 25, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918933

RESUMO

Pseudorabies virus (PRV) causes viral encephalitis, a devastating disease with high mortality worldwide. Curcumin (CUR) can reduce inflammatory damage by altering the phenotype of microglia; however, whether and how these changes mediate resistance to PRV-induced encephalitis is still unclear. In this study, BV2 cells were infected with/without PRV for 24 h and further treated with/without CUR for 24 h. The results indicated that CUR promoted the polarization of PRV-infected BV2 cells from the M1 phenotype to the M2 phenotype and reversed PRV-induced mitochondrial dysfunction. Furthermore, M1 BV2 cell secretions induced signalling pathways leading to apoptosis in PC-12 neuronal cells, and this effect was abrogated by the secretions of M2 BV2 cells. RNA sequencing and bioinformatics analysis predicted that this phenotypic shift may be due to changes in energy metabolism. Furthermore, Western blot analysis showed that CUR inhibited the increase in AMP-activated protein kinase (AMPK) phosphorylation, glycolysis, and triacylglycerol synthesis and the reduction in oxidative phosphorylation induced by PRV infection. Moreover, the ATP levels in M2 BV2 cells were higher than those in M1 cells. Furthermore, CUR prevented the increase in mortality, elevated body temperature, slowed growth, nervous system excitation, brain tissue congestion, vascular cuffing, and other symptoms of PRV-induced encephalitis in vivo. Thus, this study demonstrated that CUR protected against PRV-induced viral encephalitis by switching the phenotype of BV2 cells, thereby protecting neurons from inflammatory injury, and this effect was mediated by improving mitochondrial function and the AMPK/NF-κB p65-energy metabolism-related pathway.


Assuntos
Curcumina , Encefalite Viral , Encefalite , Herpesvirus Suídeo 1 , Pseudorraiva , Animais , Curcumina/efeitos adversos , Curcumina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Microglia/metabolismo , Encefalite/induzido quimicamente , Encefalite/metabolismo , Encefalite/veterinária , Fenótipo , Encefalite Viral/metabolismo , Encefalite Viral/veterinária
3.
Sensors (Basel) ; 23(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37687930

RESUMO

Because of their superior performance, flexible strain sensors are used in a wide range of applications, including medicine and health, human-computer interaction, and precision manufacturing. Flexible strain sensors outperform conventional silicon-based sensors in high-strain environments. However, most current studies report complex flexible sensor preparation processes, and research focuses on enhancing and improving one parameter or property of the sensors, ignoring the feasibility of flexible strain sensors for applications in various fields. Since the mechanical properties of flexible sensors can be well combined with rubber conveyor belts, in this work polydimethylsiloxane (PDMS) was used as a flexible substrate by a simple way of multiple drop coating. Graphene-based flexible strain sensor films that can be used for strain detection at the joints of steel cord core conveyor belts were successfully fabricated. The results of the tests show that the sensor has a high sensitivity and can achieve a fast response (response time: 43 ms). Furthermore, the sensor can still capture the conveyor belt strain after withstanding high pressure (1.2-1.4 MPa) and high temperature (150 °C) during the belt vulcanization process. This validates the feasibility of using flexible strain sensors in steel wire core conveyor belts and has some potential for detecting abnormal strains in steel wire core conveyor belt, broadening the application field of flexible sensors.

4.
Cancer Control ; 27(1): 1073274820976664, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33317322

RESUMO

Sphingosine kinase 1 (SPHK1) regulates cell proliferation and survival by converting sphingosine to the signaling mediator sphingosine 1-phosphate (S1P). SPHK1 is widely overexpressed in most cancers, promoting tumor progression and is associated with clinical prognosis. Numerous studies have explored SPHK1 as a promising target for cancer therapy. However, due to insufficient knowledge of SPHK1 oncogenic mechanisms, its inhibitors' therapeutic potential in preventing and treating cancer still needs further investigation. In this review, we summarized the metabolic balance regulated by the SPHK1/S1P signaling pathway and highlighted the oncogenic mechanisms of SPHK1 via the upregulation of autophagy, proliferation, and survival, migration, angiogenesis and inflammation, and inhibition of apoptosis. Drug candidates targeting SPHK1 were also discussed at the end. This review provides new insights into the oncogenic effect of SPHK1 and sheds light on the future direction for targeting SPHK1 as cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Carcinogênese/patologia , Neoplasias/tratamento farmacológico , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Lisofosfolipídeos/metabolismo , Neoplasias/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/metabolismo
5.
Bull Environ Contam Toxicol ; 104(5): 682-688, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32239255

RESUMO

The increasing concentration of surface ozone (O3) was observed during recent decades in the world, which affects tree roots and forest soils. Meanwhile, the impact of ozone on tree roots is greatly affected by soil condition. However, there is a lack of knowledge about the possible effects of ozone on tree roots and soil processes. In this study, The influences of surface ozone (O3) stress on the root biomass, morphology, nutrients, soil properties, and soil enzyme activity of Elaeocarpus sylvestris and Michelia chapensis seedlings were examined at four O3 concentrations (charcoal-filtered air, 1 × O3 air, 2 × O3 air, and 4 × O3 air). Elevated O3 concentrations were found to significantly increase the root C content, N content, C/P ratio, and N/P ratio, and significantly decrease the root biomass, number of root tips, and root C/N ratio of both species. The soil organic matter content, pH, total N content, and urease and catalase activities of both species tended to increase. The limitation in root growth and responses in the root structure of E. sylvestris induced by elevated O3 concentrations led to increased bulk density and decreased soil porosity and void ratio. These profound effects of O3 concentrations on the roots and soil characteristics of these two species underscore the importance of research in O3 science.


Assuntos
Poluentes Atmosféricos/toxicidade , Elaeocarpaceae/efeitos dos fármacos , Magnoliaceae/efeitos dos fármacos , Ozônio/toxicidade , Raízes de Plantas/efeitos dos fármacos , Solo/química , Poluentes Atmosféricos/análise , Biomassa , China , Elaeocarpaceae/crescimento & desenvolvimento , Florestas , Magnoliaceae/crescimento & desenvolvimento , Ozônio/análise , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento
6.
Molecules ; 24(3)2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30754615

RESUMO

Hyaluronic acid (HA) was depolymerized by a combination of ultrasound, hydrogen peroxide and copper ion. The structures of high-molecular-weight hyaluronic acid (HMW-HA) and low-molecular-weight hyaluronic acid (LMW-HA) were determined by Fourier transform infrared (FTIR) spectroscopy, circular dichroism (CD) spectroscopy, and UV-VIS absorption spectroscopy. The degradations of HMW-HA using a physical method, a chemical method, and a combination of physical and chemical method were compared. The results show that HA can be effectively degraded by a combinatorial method involving ultrasound, hydrogen peroxide, and copper ion. Under the degradation conditions of 50 mM H2O2, 5.0 µM CuCl2, 160 W, pH 4.0, and reaction at 50 °C for 30 min, the content of glucuronic acid was 36.56%, and the yield of LMW-HA was 81.71%. The FTIR, CD, and UV-VIS absorption spectra of HA did not change with the decrease in molecular weight, indicating that the structure of HA remained intact during the degradation.


Assuntos
Cobre/química , Ácido Hialurônico/química , Peróxido de Hidrogênio/química , Dicroísmo Circular , Peso Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
7.
Bioorg Chem ; 80: 555-559, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30014923

RESUMO

Based on the screening of biocatalysts and reaction conditions including organic solvent, water content, lipase loading, reaction temperature and time, lipase TLIM exhibited the prominent promiscuity for the Knoevenagel-Michael cascade reactions of 1, 3-diketones with aromatic aldehydes to synthesize xanthone derivatives. This procedure provides satisfactory advantages such as environmental begin, simple work-up, generality, obtaining in excellent yields (80-97%), and potential for recycling of biocatalyst.


Assuntos
Ascomicetos/enzimologia , Burkholderia cepacia/enzimologia , Enzimas Imobilizadas/química , Química Verde/métodos , Lipase/química , Xantonas/síntese química , Aldeídos/síntese química , Aldeídos/química , Animais , Biocatálise , Candida/enzimologia , Catálise , Proteínas Fúngicas/química , Cetonas/síntese química , Cetonas/química , Suínos , Xantonas/química
8.
Bull Environ Contam Toxicol ; 98(4): 574-581, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28084505

RESUMO

A greenhouse pot experiment with biochar (BC) applied at 0%, 1%, 4% and 8% (w/w) in monoculture and intercropping settings was used to investigate Cd, Cr and Zn speciation in contaminated soils, the growth of two different plant types, and the heavy metal concentrations within these plants. The results showed that BC application increased the soil pH, decreased the bioavailability of Cd, Cr and Zn, significantly increased the dry biomass of Cassia occidentalis and Machilus pauhoi shoots and slightly increased the root biomass. Both BC addition and intercropping decreased the Cd, Cr and Zn contents in the M. pauhoi shoots and roots, but the effect of BC addition was more significant than the effect of intercropping. The Cd, Cr and Zn uptake by M. pauhoi shoots was reduced by up to 93.91%, 96.41% and 76.76%, respectively, when the concentration and bioavailability of Cd, Cr, and Zn were reduced by using the combination of intercropping and BC application. This treatment resulted in the greatest reduction efficiency, and resulted in a shoot biomass increase of M. pauhoi of up to 122.52% compared to the control (M. pauhoi monoculture). These results could be used as a reference for the promotion of M. pauhoi growth and the utilization of contaminated land.


Assuntos
Agricultura/métodos , Cádmio/química , Carvão Vegetal/farmacologia , Cromo/química , Lauraceae/crescimento & desenvolvimento , Solo/química , Zinco/química , Biomassa , Cádmio/análise , Cromo/análise , Poluição Ambiental , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Lauraceae/química , Senna/química , Senna/crescimento & desenvolvimento , Poluentes do Solo/análise , Zinco/análise
9.
Pak J Pharm Sci ; 30(3(Special)): 1075-1079, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28671084

RESUMO

To research on the effect of DC-CIK cells on human lymphoma cell line Raji the immunophenotype of DC-CIK cells was analyzed using flow cytometry, and its proliferation inhibition effect was detected using MTT assay. 24 nude mice (4-6 weeks old) were employed and inoculated Raji cells on right axillaries for constructing human Burkitt lymphoma model. MTT results showed that DC-CIK cells had a significant inhibitory effect on Raji cells with obvious dose- and time- dependent effect. Western Blot results confirmed that DC-CIK cells could significantly down regulate the expression of BCL-2 (P<0.05). DC-CIK cells possesses significant anti-tumor effect on human Burkitt lymphoma bearing nude mice, and down regulation of Raji induced BCL-2 cell apoptosis may be one of the inhibitory mechanisms of DC-CIK cells.


Assuntos
Proliferação de Células/fisiologia , Células Matadoras Induzidas por Citocinas/fisiologia , Células Dendríticas/fisiologia , Animais , Linhagem Celular Tumoral , Células Matadoras Induzidas por Citocinas/imunologia , Células Dendríticas/imunologia , Humanos , Imunofenotipagem , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese
10.
iScience ; 27(6): 110035, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38883827

RESUMO

Genomic alterations, such as missense mutations, often lead to the activation of oncogenic pathways and cell transformation by rewiring protein-protein interaction (PPI) networks. Understanding how mutant-directed neomorph PPIs (neoPPIs) drive cancer is vital to developing new personalized clinical strategies. However, the experimental interrogation of neoPPI functions in patients with cancer is highly challenging. To address this challenge, we developed a computational platform, termed AVERON for discovering actionable vulnerabilities enabled by rewired oncogenic networks. AVERON enables rapid systematic profiling of the clinical significance of neomorph PPIs across different cancer types, informing molecular mechanisms of neoPPI-driven tumorigenesis, and revealing therapeutically actionable neoPPI-regulated genes. We demonstrated the application of the AVERON platform by evaluating the biological functions and clinical significance of 130 neomorph interactions, experimentally determined for oncogenic BRAFV600E. The AVERON application to broad sets of mutant-directed PPIs may inform new testable biological models and clinical strategies in cancer.

11.
Sci Rep ; 14(1): 104, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168487

RESUMO

A three-layer microscopic model with Fe atoms as the top and bottom layer and SBR polymer composites as the middle layer and SBR polymer composite was established and studied. By adding C atoms as reinforcement, the stability and elastic modulus and frictional coefficient changes of SBR polymer composites before and after adding C atoms were studied. In this study, the molecular dynamics method was used to change of elastic modulus was observed by stretching, compression and shear of the SBR polymer composite; The simulation shows that after adding C atom the elastic modulus of SBR polymer composite increased, the friction coefficient of polymer composite upper and lower decreases and the relative atomsic concentration, temperature, velocity, overall temperature average, kinetic energy, total energy and MSD in the thickness direction are reduced after adding C atoms. The stability of SBR polymer composites is enhanced, and the deformation under shear is weakened. In addition, it is found that the binding energy between SBR polymer composites and Fe atoms is reduced after adding C atoms.The stability of SBR polymer composites is improved during use. This work provides a method for studying the properties of rubber composites by studying the enhancement of the stability of SBR polymer composites from the microscopic point of view.

12.
Heliyon ; 10(6): e27629, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509927

RESUMO

Background: Anaplastic Thyroid Carcinoma (ATC) is a rare and deadly malignant tumor in humans. It is prone to developing resistance to radiotherapy and chemotherapy. Molecular targeted therapy offers a novel way to treat ATC. The BRAF mutation is closely associated with many cancers, including thyroid carcinoma. Vemurafenib, a small-molecule inhibitor, is specifically designed to target the mutant serine/threonine kinase BRAF. The objective of this study is to elucidate the regulatory mechanisms underlying the effects of vemurafenib on human anaplastic thyroid carcinoma cell line FRO and to assess its potential therapeutic role. Methods: The effects of vemurafenib on the proliferation of FRO cells were assessed by the CCK-8 method and Colony-forming assay. Transwell chambers and scratch tests were employed to examine the impact of vemurafenib on the invasion and migration of FRO cells. Apoptosis and cycle distribution of FRO cells were analyzed by tunel assay and flow cytometry. The effects of vemurafenib on the expression of BRAF-activated non-protein coding RNA (BANCR), Bax, Bcl2, and E-cadherin were evaluated by qRT-PCR. Furthermore, the effects of vemurafenib on the expression of phosphoinositol-3-kinase (PI3K)/phosphoinositol-3-kinase (AKT) pathway-related proteins, BRAF, CyclinD1, Bcl-2, Bax, and E-cadherin proteins in FRO cells were investigated through the western-blot method. All experiments were conducted in three replicates. Results: Vemurafenib was observed to inhibit proliferation and induce apoptosis in a dose- and time-dependent manner (P < 0.05). The formation of FRO cell colonies, as well as migration and invasion, all showed a dose-dependent reduction (P < 0.05). Flow cytometric analysis indicated G0/G1 cell cycle arrest (P < 0.05). QRT-PCR revealed that vemurafenib could suppress the expression of BANCR and Bcl2 while increasing the expression of Bax and E-cadherin in a dose-dependent manner (P < 0.05). The protein expression levels of Bax and E-cadherin were up-regulated significantly, and the expression levels of BRAF, CyclinD1, Bcl-2, p-PI3K, p-AKT, and p-mTOR were markedly down-regulated with increasing concentrations of vemurafenib (P < 0.05). Conclusions: The proliferation and metastasis of FRO cells can be suppressed by vemurafenib through the silencing of BRAF and BANCR expression, inhibition of PI3K/AKT signaling pathway activation, induction of apoptosis, and cell cycle arrest.

13.
Sci Rep ; 14(1): 16822, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039097

RESUMO

Aiming at the three-body contact problem of mechanical rough surface containing wet coal dust interface, the three-body contact model of rough surface containing wet coal dust interface is constructed by comprehensively considering the contact deformation of rough surface and contact characteristics of wet coal dust, and based on the crushing theory. By analysing the contact force, load-bearing particle size and adjacent contact angle thresholds of the wet coal dust layer, the force chain identification criterion is formulated. Finally, quantitative calculations of the force chain characteristics are performed to reveal the effect of different initial porosities on the three-body contact stiffness, which is verified experimentally. The results of the study show that the average contact force of the wet coal dust layer can be used as the force chain contact force threshold, the average particle size can be used as the force chain particle size threshold, and the force chain angle threshold is determined by the particle coordination number. As the initial porosity decreases, the number, length and stiffness of force chains in the wet coal dust layer increase significantly, and the stiffness reaches a maximum value of 2.007 × 108 pa/m at the moment of downward pressure to stabilisation, while the trend of force chain bending varies in the opposite direction, and its minimum bending degree decreases to 20°. The maximum relative error between the simulation and experimental results of three-body contact stiffness is 9.64%, which proves the accuracy of the force chain identification criterion and the quantitative calculation of three-body contact stiffness by force chain.

14.
Front Microbiol ; 15: 1372128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505544

RESUMO

Mixing with different broadleaf trees into the monocultures of Cunninghamia lanceolata is widely adopted as an efficient transformation of the pure C. lanceolata forest. However, it is unclear how native broad-leaved trees influence the belowground ecological environment of the pure C. lanceolata culture plantation in nutrient-poor soil of South China. Herein, we aimed to investigate how a long-time mixing with native broadleaf trees shape soil microbial community of the pure C. lanceolata forest across different soil depth (0-20 cm and 20-40 cm) and to clarify relationships between the modified soil microbial community and those affected soil chemical properties. Using high-throughput sequencing technology, microbial compositions from the mixed C. lanceolata-broadleaf forest and the pure C. lanceolata forest were analyzed. Network analysis was utilized to investigate correlations among microorganisms, and network robustness was assessed by calculating network natural connectivity. Results demonstrated that the content of soil microbial biomass carbon and nitrogen, total phosphorus and pH in mixed forest stand were significantly higher than those in pure forest stand, except for available phosphorus in topsoil (0-20 cm). Simultaneously, the mixed C. lanceolata-broadleaf forest has a more homogeneous bacterial and fungal communities across different soil depth compared with the pure C. lanceolata forest, wherein the mixed forest recruited more diverse bacterial community in subsoil (20-40 cm) and reduced the diversity of fungal community in topsoil. Meanwhile, the mixed forest showed higher bacterial community stability while the pure forest showed higher fungal community stability. Moreover, bacterial communities showed significant correlations with various soil chemical indicators, whereas fungal communities exhibited correlations with only TP and pH. Therefore, the mixed C. lanceolata-broadleaf forest rely on their recruiting bacterial community to enhance and maintain the higher nutrient status of soil while the pure C. lanceolata forest rely on some specific fungi to satisfy their phosphorus requirement for survive strategy.

15.
Ultrason Sonochem ; 107: 106938, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833999

RESUMO

We investigate the effect of ultrasound on the evaporation and crystallization of sessile NaCl solution droplets which were positioned in traveling or standing wave ultrasound field. The experimental results indicated that the ultrasound field can significantly accelerate the evaporation rate of the sessile droplets and refine the crystal grains. By adjusting the distance between the sessile droplets and the ultrasound emitter, it is found that, in traveling wave ultrasound field, the sessile droplet evaporation time and the time for the appearance of NaCl grains exhibited a fluctuating increase as the droplet-emitter distance increased. While in the standing wave ultrasound, the sessile droplet evaporation rate increases with the increasing droplet-emitter distance. Overall, the traveling wave ultrasound field has a stronger effect on grain refinement of the sessile droplets than the standing wave ultrasound field. The grain refinement is attributed to the decrease of critical nucleation radius caused by ultrasound energy and the increase of the nucleation rate caused by the accelerated evaporation rate. In addition, the breakage of grains caused by ultrasonic cavitation would also lead to grain refinement.

16.
Environ Sci Pollut Res Int ; 30(49): 107854-107877, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37740809

RESUMO

Urban agglomerations (UAs) are the largest carbon emitters; thus, the emissions must be controlled to achieve carbon peak and carbon neutrality. We use long time series land-use and energy consumption data to estimate the carbon emissions in UAs. The standard deviational ellipse (SDE) and spatial autocorrelation analysis are used to reveal the spatiotemporal evolution of carbon emissions, and the geodetector, geographically and temporally weighted regression (GTWR), and boosted regression trees (BRTs) are used to analyze the driving factors. The results show the following: (1) Construction land and forest land are the main carbon sources and sinks, accounting for 93% and 94% of the total carbon sources and sinks, respectively. (2) The total carbon emissions of different UAs differ substantially, showing a spatial pattern of high emissions in the east and north and low emissions in the west and south. The carbon emissions of all UAs increase over time, with faster growth in UAs with lower carbon emissions. (3) The center of gravity of carbon emissions shifts to the south (except for North China, where it shifts to the west), and carbon emissions in UAs show a positive spatial correlation, with a predominantly high-high and low-low spatial aggregation pattern. (4) Population, GDP, and the annual number of cabs are the main factors influencing carbon emissions in most UAs, whereas other factors show significant differences. Most exhibit an increasing trend over time in their impact on carbon emissions. In general, China still faces substantial challenges in achieving the dual carbon goal. The carbon control measures of different UAs should be targeted in terms of energy utilization, green and low-carbon production, and consumption modes to achieve the low-carbon and green development goals of the United Nations' sustainable cities and beautiful China's urban construction as soon as possible.


Assuntos
Carbono , Florestas , Carbono/análise , Cidades , Análise Espacial , China , Desenvolvimento Econômico , Dióxido de Carbono/análise
17.
Materials (Basel) ; 16(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37512442

RESUMO

We studied the evaporation-driven crystallization in the droplets of sodium acetate anhydrous (CH3COONa) aqueous solution, which were deposited on superhydrophobic substrates. The results reveal distinct crystallization behaviors between saturated and unsaturated droplets under identical experimental conditions. Specifically, unsaturated droplets could form a quasi-spherical crystal shell on the superhydrophobic substrate, while saturated droplets could develop crystal legs between the droplet and substrate when the crystal shell formed. Subsequently, the saturated droplet was lifted off the substrate by the growing crystal legs. The formation of crystal shell was closely associated with the evaporation from the droplet surface and the internal convection inside the droplet. The formation of crystal legs was induced by the heterogeneous nucleation effect caused by the substrate of SiO2 nanoparticles. These findings provide valuable insights into regulating the morphology of salt crystallization through adjustments in salt solution concentration and substrate surface structure.

18.
Micromachines (Basel) ; 14(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38138312

RESUMO

N- and S-doped CQDs were prepared using L-cysteine as a precursor. Different NS-CQDs/g-C3N4 composite photocatalysts were formed by modifying graphite-phase carbon nitride with different contents of NS-CQDs using a hydrothermal method. The morphology, constituent elements and functional groups of the composite photocatalysts were analyzed by SEM, EDS, TEM, Mapping, XRD and FT-IR as a proof of its successful preparation. Meanwhile, it was characterized by PL, UV-Vis DRS and electrochemical impedance, which proved that the CQDs could be used as an electronic memory in the composite system to accelerate the electron transfer induced by the photo-excitation of g-C3N4 and effectively inhibit the recombination of e--h+ improvement of the photocatalytic activity of g-C3N4. The stability of the composite photocatalysts under different conditions and the photodegradation activity of Rh B under visible light were investigated. It was found that the photocatalytic degradation efficiency of rhodamine B by NS-CQDS-modified g-C3N4 was significantly higher than that of pure g-C3N4, which could reach 90.82%, and its degradation rate was 3.5 times higher than that of pure g-C3N4. It was demonstrated by free radical trapping experiments that ·OH and ·O2- were the main active species in the photocatalytic degradation process, in which ·O2- played a guiding role.

19.
Micromachines (Basel) ; 14(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38138315

RESUMO

By using melamine as a precursor for the copolymerization process, g-C3N4 and g-C3N4/TCNQ/Eu complexes with various amounts of doping were created. These complexes were then examined using XRD, FT-IR, SEM, TEM, XPS, PL, UV-vis, and I-T. The degradation rates of pefloxacin (PEF), enrofloxacin (ENR), and ciprofloxacin (CIP) were 91.1%, 90.8%, and 93.2% under visible light (λ > 550 nm). The photocatalytic performance of the composite was analyzed, and the best effect was obtained for CIP photocatalysis when Eu doping was 3 mg at 20 °C and pH 7. Kinetic analysis showed that there was a linear relationship between the sample and the photocatalytic time, and the degradation rate was about 5 times that of g-C3N4. The cyclic stability of the g-C3N4/TCNQ/Eu composite sample was found to be good through repeated experiments. UPLC-MS visualizes the degradation process of CIP. The extremely low stability of piperazine ring induced subsequent degradation, followed by the fracture of quinolone ring promoting the complete decomposition of CIP.

20.
Adv Sci (Weinh) ; 10(19): e2300049, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36967571

RESUMO

Bubbles in air are ephemeral because of gravity-induced drainage and liquid evaporation, which severely limits their applications, especially as intriguing bio/chemical reactors. In this work, a new approach using acoustic levitation combined with controlled liquid compensation to stabilize bubbles is proposed. Due to the suppression of drainage by sound field and prevention of capillary waves by liquid compensation, the bubbles can remain stable and intact permanently. It has been found that the acoustically levitated bubble shows a significantly enhanced particle adsorption ability because of the oscillation of the bubble and the presence of internal acoustic streaming. The results shed light on the development of novel air-purification techniques without consuming any solid filters.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa