Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Angew Chem Int Ed Engl ; 63(33): e202403333, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38787684

RESUMO

Numerous studies have shown a fact that phase transformation and/or reconstruction are likely to occur and play crucial roles in electrochemical scenarios. Nevertheless, a decisive factor behind the diverse photoelectrochemical activity and selectivity of various copper/silicon photoelectrodes is still largely debated and missing in the community, especially the possibly dynamic behaviors of metal catalyst/semiconductor interface. Herein, through in situ X-ray absorption spectroscopy and transmission electron microscope, a model system of Cu nanocrystals with well-defined facets on black p-type silicon (BSi) is unprecedentedly demonstrated to reveal the dynamic phase transformation of forming irreversible silicide at Cu nanocrystal-BSi interface during photoelectrocatalysis, which is validated to originate from the atomic interdiffusion between Cu and Si driven by light-induced dynamic activation process. Significantly, the adaptive junction at Cu-Si interface is activated by an expansion of interatomic Cu-Cu distance for CO2 electroreduction, which efficiently restricts the C-C coupling pathway but strengthens the bonding with key intermediate of *CHO for CH4 yield, resulting in a remarkable 16-fold improvement in the product ratio of CH4/C2 products and an intriguing selectivity switch. This work offers new insights into dynamic structural transformations of metal/semiconductor junction and design of highly efficient catalysts toward photosynthesis.

2.
Angew Chem Int Ed Engl ; : e202416947, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39343739

RESUMO

Lithium-carbon dioxide (Li-CO2) and Li-air batteries hold great potential in achieving carbon neutral given their ultrahigh theoretical energy density and eco-friendly features. However, these Li-gas batteries still suffer from low discharging-charging rate and poor cycling life due to sluggish decomposition kinetics of discharge products especially Li2CO3. Here we report the theory-guided design and preparation of unconventional phase metal heteronanostructures as cathode catalysts for high-performance Li-CO2/air batteries. The assembled Li-CO2 cells with unconventional phase 4H/face-centered cubic (fcc) ruthenium-nickel heteronanostructures deliver a narrow discharge-charge gap of 0.65 V, excellent rate capability and long-term cycling stability over 200 cycles at 250 mA g-1. The constructed Li-air batteries can steadily run for above 150 cycles in ambient air. Electrochemical mechanism studies reveal that 4H/fcc Ru-Ni with high-electroactivity facets can boost redox reaction kinetics and tune discharge reactions towards Li2C2O4 path, alleviating electrolyte/catalyst failures induced by the aggressive singlet oxygen from solo decomposition of Li2CO3.

3.
J Am Chem Soc ; 145(12): 6953-6965, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36921031

RESUMO

Copper-oxide electrocatalysts have been demonstrated to effectively perform the electrochemical CO2 reduction reaction (CO2RR) toward C2+ products, yet preserving the reactive high-valent CuOx has remained elusive. Herein, we demonstrate a model system of Lewis acidic supported Cu electrocatalyst with a pulsed electroreduction method to achieve enhanced performance for C2+ products, in which an optimized electrocatalyst could reach ∼76% Faradaic efficiency for C2+ products (FEC2+) at ∼-0.99 V versus reversible hydrogen electrode, and the corresponding mass activity can be enhanced by ∼2 times as compared to that of conventional CuOx. In situ time-resolved X-ray absorption spectroscopy investigating the dynamic chemical/physical nature of Cu during CO2RR discloses that an activation process induced by the KOH electrolyte during pulsed electroreduction greatly enriched the Cuδ+O/Znδ+O interfaces, which further reveals that the presence of Znδ+O species under the cathodic potential could effectively serve as a Lewis acidic support for preserving the Cuδ+O species to facilitate the formation of C2+ products, and the catalyst structure-property relationship of Cuδ+O/Znδ+O interfaces can be evidently realized. More importantly, we find a universality of stabilizing Cuδ+O species for various metal oxide supports and to provide a general concept of appropriate electrocatalyst-Lewis acidic support interaction for promoting C2+ products.

4.
Angew Chem Int Ed Engl ; 62(33): e202306881, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37389975

RESUMO

Multimetallic alloy nanoparticles (NPs) have received considerable attention in various applications due to their compositional variability and exceptional properties. However, the complexity of both the general synthesis and structure-activity relationships remain the long-standing challenges in this field. Herein, we report a versatile 2D MOF-assisted pyrolysis-displacement-alloying route to successfully synthesize a series of binary, ternary and even high-entropy NPs that are uniformly dispersed on porous nitrogen-doped carbon nanosheets (PNC NSs). As a proof of utility, the obtained Co0.2 Ru0.7 Pt0.1 /PNC NSs exhibits apparent hydrogen oxidation activity and durability with a record-high mass specific kinetic current of 1.84 A mg-1 at the overpotential of 50 mV, which is approximately 11.5 times higher than that of the Pt benchmark. Both experimental and theoretical studies reveal that the addition of Pt engenders a phase transition in CoRu alloys from hexagonal close-packed (hcp) to face-centered cubic (fcc) structure. The elevated reactivity of the resulted ternary alloy can be attributed to the optimized adsorption of hydrogen intermediate and the decreased reaction barrier for water formation. This study opens a new avenue for the development of highly efficient alloy NPs with various compositions and functions.

5.
Angew Chem Int Ed Engl ; 62(49): e202313325, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37818672

RESUMO

Photocatalytic organic functionalization reactions represent a green, cost-effective, and sustainable synthesis route for value-added chemicals. However, heterogeneous photocatalysis is inefficient in directly activating ammonia molecules for the production of high-value-added nitrogenous organic products when compared with oxygen activation in the formation of related oxygenated compounds. In this study, we report the heterogeneous photosynthesis of benzonitriles by the ammoxidation of benzyl alcohols (99 % conversion, 93 % selectivity) promoted using BiOBr nanosheets with surface vacancy associates. In contrast, the main reaction of catalysts with other types of vacancy sites is the oxidation of benzyl alcohol to benzaldehyde or benzoic acid. Experimental measurements and theoretical calculations have demonstrated a specificity of vacancy type with respect to product selectivity, which arises from the adsorption and activation of NH3 and O2 that is required to promote subsequent C-N coupling and oxidation to nitrile. This study provides a better understanding of the role of vacancies as catalytic sites in heterogeneous photocatalysis.

6.
J Am Chem Soc ; 144(3): 1174-1186, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34935380

RESUMO

Real bifunctional electrocatalysts for hydrogen evolution reaction and oxygen evolution reaction have to be the ones that exhibit a steady configuration during/after reaction without irreversible structural transformation or surface reconstruction. Otherwise, they can be termed as "precatalysts" rather than real catalysts. Herein, through a strongly atomic metal-support interaction, single-atom dispersed catalysts decorating atomically dispersed Ru onto a nickel-vanadium layered double hydroxide (LDH) scaffold can exhibit excellent HER and OER activities. Both in situ X-ray absorption spectroscopy and operando Raman spectroscopic investigation clarify that the presence of atomic Ru on the surface of nickel-vanadium LDH is playing an imperative role in stabilizing the dangling bond-rich surface and further leads to a reconstruction-free surface. Through strong metal-support interaction provided by nickel-vanadium LDH, the significant interplay can stabilize the reactive atomic Ru site to reach a small fluctuation in oxidation state toward cathodic HER without reconstruction, while the atomic Ru site can stabilize the Ni site to have a greater structural tolerance toward both the bond constriction and structural distortion caused by oxidizing the Ni site during anodic OER and boost the oxidation state increase in the Ni site that contributes to its superior OER performance. Unlike numerous bifunctional catalysts that have suffered from the structural reconstruction/transformation for adapting the HER/OER cycles, the proposed Ru/Ni3V-LDH is characteristic of steady dual reactive sites with the presence of a strong metal-support interaction (i.e., Ru and Ni sites) for individual catalysis in water splitting and is revealed to be termed as a real bifunctional electrocatalyst.

7.
J Am Chem Soc ; 144(8): 3386-3397, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35167259

RESUMO

Solar-driven photocatalytic reactions can mildly activate hydrocarbon C-H bonds to produce value-added chemicals. However, the inefficient utilization of photogenerated carriers hinders the application. Here, we report reversible photochromic BiOBr (denoted as p-BiOBr) nanosheets that were colored by trapping photogenerated holes upon visible light irradiation and bleached by water oxidation to generate hydroxyl radicals, demonstrating enhanced carrier separation and water oxidation. The photocatalytic coupling and oxidation reactions of ethylbenzene were efficiently realized by p-BiOBr in a water-based medium under ambient temperature and pressure (apparent quantum yield is 14 times that of pristine BiOBr). The p-BiOBr nanosheets feature lattice disordered defects on the surface, providing rich uncoordinated catalytic sites and inducing structural distortions and lattice strain, which further leads to an altered band structure and significantly enhanced photocatalytic performances. These hole-trapping materials open up the possibility of substantially elevating the utilization efficiency of photogenerated holes for high-efficiency photocatalytic activation of various saturated C-H bonds.

8.
Inorg Chem ; 60(10): 6930-6938, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33792308

RESUMO

Heterogeneous catalysis based on air-stable lanthanide complexes is relatively rare, especially for electrochemical water oxidation and reduction. Therefore, it is highly desired to investigate the synergy caused by cocatalysts on the lanthanide complex family for heterogeneous catalysis because of their structural diversity, air/moisture insensitivity, and easy preparation under an air atmosphere. Two mononuclear and three dinuclear dysprosium complexes containing a series of Schiff-base ligands have been demonstrated as robust electrocatalysts for triggering heterogeneous water oxidation in alkaline solution, in which the complex [Dy2(hmb)2(OAc)4]·MeCN(3) was revealed to have the best activity toward heterogeneous water oxidation among all five complexes in the present study. The molecular activation of dysprosium complexes has also been investigated with a series of N-containing heterocyclic additives [i.e., 4-(dimethylamino)pyridine (DMAP), bis(triphenylphosphine)iminium chloride ([PPN]Cl), indole, and quinoline]. In particular, the corresponding overpotential was effectively enhanced by 211 mV (at a current density of 10 mA cm-2) with the assistance of DMAP. On the basis of electrochemical and ex situ/in situ spectroscopic investigations, the best catalyst, DMAP-complex 3 on a carbon paper electrode, was confirmed with well-maintained molecular identity during heterogeneous water oxidation free of forming any dysprosium oxide and/or undesired products.

9.
J Am Chem Soc ; 142(28): 12119-12132, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32558560

RESUMO

Understanding the dynamic structural reconstruction/transformation of catalysts during electrochemical CO2 reduction reaction (CO2RR) is highly desired for developing more efficient and selective catalysts, yet still lacks in-depth realization. Herein, we study a model system of copper nanowires with various degrees of silver modifications as electrocatalysts for CO2RR. Among them, the Cu68Ag32 nanowire catalyst achieves the highest activity and selectivity toward methane with an extremely high faradaic efficiency of ∼60%, about 3 times higher than that of primitive Cu nanowires, and even surpasses the most efficient catalysts for producing methane. By using in situ grazing-angle X-ray scattering/diffraction, X-ray absorption spectroscopy, and Raman techniques, we found that the Cu68Ag32 nanowires underwent an irreversible structural reconstruction and well-stabilized chemical state of Cu on the catalyst surface under the working CO2RR conditions, which greatly facilitates the CO2 to methane conversion. Further analysis reveals that the restructuring phenomenon can be ascribed to a reoxidation/reduction-driven atomic interdiffusion between Cu and Ag. This work reveals the first empirical demonstration by deploying comprehensive in situ techniques to track the dynamic structural reconstruction/transformation in a model bimetallic system, which not only establishes a good understanding of the correlation between catalyst surface structure and catalytic selectivity but also provides deep insights into designing more developed electrocatalysts for CO2RR and beyond.

10.
Anal Chem ; 91(13): 8213-8220, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31141343

RESUMO

The discovery of different binding receptors to allow rapid and high-sensitivity detection via a noninvasive urine test has become the goal for urothelial carcinoma (UC) diagnosis and surveillance. In this study, we developed a new screening membrane receptor platform for bladder cancer cells by integrating surface-enhanced Raman spectroscopy (SERS) with 4-aminothiophenol (4-ATP)-modified AuAg nanohollows upon NIR laser excitation. AuAg nanohollows have an absorption band at ∼630 nm, and slightly off-resonance 785 nm laser excitation is used for minimal photothermal effect. Using the same carbodiimide cross-linker chemistry to conjugate anti-EGFR, transferrin (TF), 4-carboxyphenylboronic acid (CPBA), folic acid (FA), and hyaluronic acid (HA) molecules, by screening the 4-ATP SERS signals intensity, we demonstrated that the targeting efficiency with the cost-effective CPBA molecule is comparable with the conjugation of anti-EGFR antibody to aggressive T24 cancer cells (high-grade), while weak intensity 4-ATP SERS responses to targets were obtained by grade-I RT4 bladder cancer cells, NIH/3T3 fibroblast cells, and SV-HUC1 bladder normal cells. This SERS nanoprobe platform makes primary bladder carcinoma screening from in vitro to ex vivo more straightforward. Our demonstration offers exciting potential for SERS screening of specific receptors on cancer cells of different grades and facilitates new opportunities ranging from surface engineering of SERS material tags to SERS imaging-guided and targeted phototherapy of cancer cells by controlling the laser powers.


Assuntos
Biomarcadores Tumorais/análise , Análise Espectral Raman/métodos , Neoplasias da Bexiga Urinária/diagnóstico , Compostos de Anilina/química , Animais , Linhagem Celular , Linhagem Celular Tumoral , Ouro , Humanos , Nanopartículas Metálicas/química , Camundongos , Prata , Compostos de Sulfidrila/química
11.
BMC Complement Altern Med ; 18(1): 323, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518367

RESUMO

BACKGROUND: Weight reduction frequently occurs in patients receiving vagus nerve stimulation (VNS) therapy. Therefore, we hypothesized that during dietary intervention for weight loss, auricular electric stimulation (AES), an alternative of VNS, accelerates weight loss by increasing white adipose tissue (WAT) browning and increases energy expenditure. METHODS: C57BL/6J male mice were fed a high-fat diet for 5 wk. to induce obesity, then switched to a low-fat diet for 5 wk. and allocated into 3 groups to receive 2 Hz electric stimulation on ears, electrode clamps only, or nothing (AES, Sham and Ctrl, respectively). RESULTS: Switching to a low-fat diet reduced body weight progressively in all 3 groups, with the greatest reduction in the AES group. In accordance with a mild decrease in feed intake, hypothalamus mRNA levels of Npy, AgRP tended to be reduced, while Pomc tended to be increased by AES. Mice in the AES group had the highest concentrations of norepinephrine in serum and inguinal WAT, and expression levels of uncoupling protein-1 (UCP-1) and tyrosine hydroxylase in inguinal WAT. Furthermore, their subcutaneous adipocytes had multilocular and UCP-1+ characteristics, along with a smaller cell size. CONCLUSION: AES, by increasing WAT browning, could be used in conjunction with a low-fat diet to augment weight loss in addition to suppressing appetite.


Assuntos
Tecido Adiposo Branco/fisiologia , Auriculoterapia/métodos , Dieta com Restrição de Gorduras , Estimulação Elétrica/métodos , Redução de Peso/fisiologia , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/terapia
12.
Anal Chem ; 87(1): 808-15, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25471522

RESUMO

Interesting properties of water with distinguishable hydrogen-bonding structure on interfacial phase or in confined environment have drawn wide attentions. However, these unique properties of water are only found within the interfacial phase and confined environment, thus, their applications are limited. In addition, quantitative evaluation on these unique properties associating with the enhancement of water's physical and chemical activities represents a notable challenge. Here we report a practicable production of free-standing liquid water at room temperature with weak hydrogen-bonded structure naming Au nanoparticles (NPs)-treated (AuNT) water via treating by plasmon-induced hot electron transfer occurred on resonantly illuminated gold NPs (AuNPs). Compared to well-known untreated bulk water (deionized water), the prepared AuNT water exhibits many distinct activities in generally physical and chemical reactions, such as high solubilities to NaCl and O2. Also, reducing interaction energy within water molecules provides lower overpotential and higher efficiency in electrolytic hydrogen production. In addition, these enhanced catalytic activities of AuNT water are tunable by mixing with deionized water. Also, most of these tunable activities are linearly proportional to its degree of nonhydrogen-bonded structure (DNHBS), which is derived from the O-H stretching in deconvoluted Raman spectrum.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Água/química , Cerâmica , Técnicas Eletroquímicas , Ligação de Hidrogênio , Oxigênio/metabolismo , Cloreto de Sódio/metabolismo , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Anal Chem ; 86(19): 9443-50, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24641163

RESUMO

This study proposes a vascular endothelial growth factor (VEGF) biosensor for diagnosing various stages of cervical carcinoma. In addition, VEGF concentrations at various stages of cancer therapy are determined and compared to data obtained by computed tomography (CT) and cancer antigen 125 (CA-125). The increase in VEGF concentrations during operations offers useful insight into dosage timing during cancer therapy. This biosensor uses Avastin as the biorecognition element for the potential cancer biomarker VEGF and is based on a n-type polycrystalline silicon nanowire field-effect transistor (poly-SiNW-FET). Magnetic nanoparticles with poly[aniline-co-N-(1-one-butyric acid) aniline]-Fe3O4 (SPAnH-Fe3O4) shell-core structures are used as carriers for Avastin loading and provide rapid purification due to their magnetic properties, which prevent the loss of bioactivity; furthermore, the high surface area of these structures increases the quantity of Avastin immobilized. Average concentrations in human blood for species that interfere with detection specificity are also evaluated. The detection range of the biosensor for serum samples covers the results expected from both healthy individuals and cancer patients.


Assuntos
Anticorpos Monoclonais Humanizados/química , Técnicas Biossensoriais , Antígeno Ca-125/sangue , Carcinoma/diagnóstico , Proteínas de Membrana/sangue , Neoplasias do Colo do Útero/diagnóstico , Fator A de Crescimento do Endotélio Vascular/sangue , Anticorpos Monoclonais Humanizados/imunologia , Bevacizumab , Antígeno Ca-125/análise , Carcinoma/sangue , Carcinoma/imunologia , Carcinoma/patologia , Feminino , Óxido Ferroso-Férrico/química , Humanos , Imãs , Proteínas de Membrana/análise , Nanofios/química , Estadiamento de Neoplasias , Silício/química , Tomografia Computadorizada por Raios X , Transistores Eletrônicos , Neoplasias do Colo do Útero/sangue , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/patologia
14.
Analyst ; 139(8): 1929-37, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24575422

RESUMO

Surface-enhanced Raman scattering (SERS) utilizing the well-defined localized surface plasmon resonance (LSPR) of Ag and Au nanoparticles (NPs) under resonant irradiation has emerged as a promising spectroscopy technique for providing vibrational information on trace molecules. The Raman scattering intensity from molecules close to the surface of these finely divided metals can be significantly enhanced by a factor of more than 10(6). In addition to the high sensitivity, the reproducibility of the SERS signal is also an important parameter for its reliable application. In this work, we report on the innovative and facile fabrication of a Au NP-decorated SiO2 mask coated on indium tin oxide (ITO) glass as a SERS array substrate. First, a highly ordered porous SiO2 mask with pore sizes of 350 nm in diameter and wall thickness of 60 nm was deposited on ITO glass by using spin coating. Then, Au NPs were controllably decorated into the pores of the conductive ITO glass-bottomed SiO2 mask by using sonoelectrochemical deposition-dissolution cycling (SEDDC). Experimental results indicate that the SERS effect of Rhodamine 6G (R6G) observed on this developed substrate increases with an increase in the deposition time of Au NPs in SEDDC. The corresponding optimal enhancement factor (EF) that is obtained is ca. 6.5 × 10(7). Significantly, this system achieves an optimal reproducibility under a medium-length deposition time of Au NPs in SEDDC with a relative standard deviation (RSD) of 12% for measurements of five spots on different areas. The low RSD of the SERS signal and the large EF suggest that the developed array system can serve as an excellent spectroscopy platform for practical applications in analytical chemistry.


Assuntos
Ouro/química , Nanopartículas Metálicas , Dióxido de Silício/química , Análise Espectral Raman/métodos , Microscopia Eletrônica de Varredura , Reprodutibilidade dos Testes , Propriedades de Superfície
15.
Adv Mater ; 36(25): e2400523, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38594481

RESUMO

The interaction between oxygen species and metal sites of various orbitals exhibits intimate correlation with the oxygen reduction reaction (ORR) kinetics. Herein, a new approach for boosting the inherent ORR activity of atomically dispersed Fe-N-C matrix is represented by implanting Fe atomic clusters nearby. The as-prepared catalyst delivers excellent ORR activity with half-wave potentials of 0.78 and 0.90 V in acidic and alkaline solutions, respectively. The decent ORR activity can also be validated from the high-performance rechargeable Zn-air battery. The experiments and density functional theory calculations reveal that the electron spin-state of monodispersed Fe active sites is transferred from the low spin (LS, t2g 6 eg 0) to the medium spin (MS, t2g 5 eg 1) due to the involvement of Fe atomic clusters, leading to the spin electron filling in σ∗ orbit, by which it favors OH- desorption and in turn boosts the reaction kinetics of the rate-determining step. This work paves a solid way for rational design of high-performance Fe-based single atom catalysts through spin manipulation.

16.
Nat Commun ; 15(1): 2062, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453927

RESUMO

Metal-nitrogen-carbon catalysts with hierarchically dispersed porosity are deemed as efficient geometry for oxygen reduction reaction (ORR). However, catalytic performance determined by individual and interacting sites originating from structural heterogeneity is particularly elusive and yet remains to be understood. Here, an efficient hierarchically porous Fe single atom catalyst (Fe SAs-HP) is prepared with Fe atoms densely resided at micropores and mesopores. Fe SAs-HP exhibits robust ORR performance with half-wave potential of 0.94 V and turnover frequency of 5.99 e-1s-1site-1 at 0.80 V. Theoretical simulations unravel a structural heterogeneity induced optimization, where mesoporous Fe-N4 acts as real active centers as a result of long-range electron regulation by adjacent microporous sites, facilitating O2 activation and desorption of key intermediate *OH. Multilevel operando characterization results identify active Fe sites undergo a dynamic evolution from basic Fe-N4 to active Fe-N3 under working conditions. Our findings reveal the structural origin of enhanced intrinsic activity for hierarchically porous Fe-N4 sites.

17.
Adv Mater ; 36(26): e2400640, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621196

RESUMO

Nowadays, high-valent Cu species (i.e., Cuδ +) are clarified to enhance multi-carbon production in electrochemical CO2 reduction reaction (CO2RR). Nonetheless, the inconsistent average Cu valence states are reported to significantly govern the product profile of CO2RR, which may lead to misunderstanding of the enhanced mechanism for multi-carbon production and results in ambiguous roles of high-valent Cu species. Dynamic Cuδ + during CO2RR leads to erratic valence states and challenges of high-valent species determination. Herein, an alternative descriptor of (sub)surface oxygen, the (sub)surface-oxygenated degree (κ), is proposed to quantify the active high-valent Cu species on the (sub)surface, which regulates the multi-carbon production of CO2RR. The κ validates a strong correlation to the carbonyl (*CO) coupling efficiency and is the critical factor for the multi-carbon enhancement, in which an optimized Cu2O@Pd2.31 achieves the multi-carbon partial current density of ≈330 mA cm-2 with a faradaic efficiency of 83.5%. This work shows a promising way to unveil the role of high-valent species and further achieve carbon neutralization.

18.
Adv Mater ; 36(11): e2308243, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38102967

RESUMO

The development of facile, efficient synthesis method to construct low-cost and high-performance single-atom catalysts (SACs) for oxygen reduction reaction (ORR) is extremely important, yet still challenging. Herein, an atomically dispersed N, S co-doped carbon with abundant vacancy defects (NSC-vd) anchored Fe single atoms (SAs) is reported and a vacancy defects inductive effect is proposed for promoting electrocatalytic ORR. The optimized catalyst featured of stable Fe─N3 S1 active sites exhibits excellent ORR activity with high turnover frequency and mass activity. In situ Raman, attenuated total reflectance surface enhanced infrared absorption spectroscopy reveal the Fe─N3 S1 active sites exhibit different kinetic mechanisms in acidic and alkaline solutions. Operando X-ray absorption spectra reveal the ORR activity of Fe SAs/NSC-vd catalyst in different electrolyte is closely related to the coordination structure. Theoretical calculation reveals the upshifted d band center of Fe─N3 S1 active sites facilitates the adsorption of O2 and accelerates the kinetics process of *OH reduction. The abundant vacancy defects around the Fe─N3 S1 active sites balance the OOH* formation and *OH reduction, thus synergetically promoting the electrocatalytic ORR process.

19.
Adv Mater ; 36(14): e2313548, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38279631

RESUMO

Electrocatalytic nitrate reduction reaction (NO3RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle. However, it still remains a great challenge to achieve highly efficient ammonia production due to the complex proton-coupled electron transfer process in NO3RR. Here, the controlled synthesis of RuMo alloy nanoflowers (NFs) with unconventional face-centered cubic (fcc) phase and hexagonal close-packed/fcc heterophase for highly efficient NO3RR is reported. Significantly, fcc RuMo NFs demonstrate high Faradaic efficiency of 95.2% and a large yield rate of 32.7 mg h-1 mgcat -1 toward ammonia production at 0 and -0.1 V (vs reversible hydrogen electrode), respectively. In situ characterizations and theoretical calculations have unraveled that fcc RuMo NFs possess the highest d-band center with superior electroactivity, which originates from the strong Ru─Mo interactions and the high intrinsic activity of the unconventional fcc phase. The optimal electronic structures of fcc RuMo NFs supply strong adsorption of key intermediates with suppression of the competitive hydrogen evolution, which further determines the remarkable NO3RR performance. The successful demonstration of high-performance zinc-nitrate batteries with fcc RuMo NFs suggests their substantial application potential in electrochemical energy supply systems.

20.
Adv Mater ; 35(48): e2307003, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37748200

RESUMO

The integration of electronic effects into complexes for the construction of novel materials has not yet attracted significant attention in the field of energy storage. In the current study, eight one-dimensional (1D) nickel-based salicylic acid  complexes (Ni-XSAs, X = pH, pMe, pMeO, mMe, pBr, pCl, pF, and pCF3 ), are prepared by ligand engineering. The coordination environments in the Ni-XSAs are explored using X-ray absorption fine structure spectroscopy. The charge transfer of the complexes is modulated according to the difference in the electron-donating ability of the substituents, in combination with frontier orbital theory. Furthermore, density functional theory is used to investigate the effect of the substituent position on the electronic properties of the complexes. Ni-mMeSA exhibits better electrical conductivity than Ni-pMeSA. The electrochemical performance of Ni-mMeSA as an aqueous battery cathode is remarkably improved with a maximum energy density of 0.30 mWh cm-2 (125 Wh kg-1 ) and a peak power density of 33.72 mW cm-2 (14.03 kW kg-1 ). This study provides ideas for the application of new coordination chemistry in the field of energy materials science.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa