RESUMO
The aim of this study was to investigate the role of retained acupuncture (RA) in neurotoxin-induced Parkinson's disease (PD) mice. Male C57BL/6 mice were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce the PD model. The mice were divided into four groups, namely, (1) normal; (2) MPTP+retained acupuncture (RA); (3) MPTP+electroacupuncture (EA); (4) MPTP+sham acupuncture (SA). After mice being manipulated with/without acupuncture at acupoints (Daling, PC 7), groups 2-4 were injected with MPTP (15 mg/kg/d). The mice were evaluated for behavioral changes, in terms of time of landing, after acupuncture treatment. The animals were sacrificed and their brains assayed for dopamine and its metabolites and tyrosine hydroxylase (TH) expression by using HPLC and immunohistochemistry/Western blotting, respectively. [(123)I] IBZM-SPECT imaging between SA and RA groups were compared. The results showed that the time of landing of the three groups with treatment was significant longer than group 1 (normal) (4.33±0.15 s). Nonetheless, group 2 (RA) (7.13±0.20 s) had a shorter time of landing than group 4 (SA) (7.89±0.46 s). The number of TH (+) neurons and the expression of TH proteins were significantly higher in the RA group than in the SA/EA groups. RA also increased the uptake of [(123)I] IBZM into the triatum compared to the SA group. We conclude that RA possibly attenuates neuronal damage in MPTP-induced PD mice, which suggests RA may be useful as a complementary strategy when treating human PD.
Assuntos
Terapia por Acupuntura/métodos , Comportamento Animal/fisiologia , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/terapia , Neurônios/metabolismo , Substância Negra/metabolismo , Animais , Contagem de Células , Modelos Animais de Doenças , Dopamina/metabolismo , Intoxicação por MPTP/induzido quimicamente , Intoxicação por MPTP/fisiopatologia , Masculino , Camundongos , Tirosina 3-Mono-Oxigenase/metabolismoRESUMO
Mass spectrometric approaches to the identification and quantification of lipid signalling molecules are reviewed. Fatty acid amides are an important new class of lipid signalling molecules which include oleamide, the endocannabinoid anandamide, the endovanilloid/endocannabinoid N-arachidonoyldopamine (NADA) and the endovanilloid N-oleoyldopamine (OLDA) among many others. This diverse group of endogenous compounds comprises combinations of acyl backbones coupled by an amide bond to any of a variety of different small polar molecules such as ethanolamine, various amino acids, and catecholamines. Many fatty acid amides appear to play a role in pain and inflammation. Targeted lipidomics of fatty acid amides aims to identify new members of this diverse class of compounds, of which only a few representative molecules have been characterized to date. This effort has been made feasible by advances in chromatography and mass spectrometry, which permits: (1) identification of compounds present in complex mixtures, (2) astronomical increases in sensitivity due to miniaturization of HPLC components, and (3) novel scanning modes that permit the identification of compounds exhibiting similar structural components. Insofar as lipid signalling molecules such as prostanoids, leukotrienes and endocannabinoids operate via G-protein coupled receptors (GPCR), it appears likely that many of the numerous lipids awaiting identification may serve as ligands for any of the greater than 150 orphan GPCRs.
Assuntos
Amidas/química , Ácidos Graxos/química , Metabolismo dos Lipídeos , Dor/tratamento farmacológico , Analgésicos/farmacologia , Animais , Ácidos Araquidônicos/química , Cromatografia Líquida de Alta Pressão , Dopamina/análogos & derivados , Dopamina/química , Ácidos Graxos/metabolismo , Humanos , Inflamação , Lipídeos/química , Espectrometria de Massas , Modelos Químicos , Receptores Acoplados a Proteínas G/química , Transdução de SinaisRESUMO
The objective of this study was to use a mixture of Poisson (MOP) model expectation maximum (EM) algorithm for segmenting microPET images. Simulated rat phantoms with partial volume effect and different noise levels were generated to evaluate the performance of the method. The partial volume correction was performed using an EM deblurring method before the segmentation. The EM-MOP outperforms the EM-MOP in terms of the estimated spatial accuracy, quantitative accuracy, robustness and computing efficiency. To conclude, the proposed EM-MOP method is a reliable and accurate approach for estimating uptake levels and spatial distributions across target tissues in microPET (11)C-raclopride imaging studies.