Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Int ; 185: 108527, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422873

RESUMO

Chlorinated paraffins (CPs), mainly short-chain CPs (SCCPs) and medium-chain CPs (MCCPs), are currently the most produced and used industrial chemicals related to persistent organic pollutants (POPs) globally. These chemicals are widely detected in the environment and in the human body. As the release of SCCPs and MCCPs from products represents only a small fraction of their stock in products, the potential long-term release of CPs from a large variety of products at the waste stage has become an issue of great concern. The results of this study showed that, by 2050, SCCPs and MCCPs used between 2000 and 2021 will cumulatively generate 226.49 Mt of CP-containing wastes, comprising 8610.13 kt of SCCPs and MCCPs. Approximately 79.72 Mt of CP-containing wastes is predicted to be generated abroad through the international trade of products using SCCPs and MCCPs. The magnitude, distribution, and growth of CP-containing wastes subject to environmentally sound disposal will depend largely on the relevant provisions of the Stockholm and Basel Conventions and the forthcoming global plastic treaty. According to multiple scenarios synthesizing the provisions of the three conventions, 26.6-101.1 Mt of CP-containing wastes will be subject to environmentally sound disposal as POP wastes, which would pose a great challenge to the waste disposal capacity of China, as well as for countries importing CP-containing products. The additional 5-year exemption period for MCCPs is expected to see an additional 10 Mt of CP-containing wastes subject to environmentally sound disposal. Thus, there is an urgent need to strengthen the Stockholm and Basel Conventions and the global plastic treaty.


Assuntos
Hidrocarbonetos Clorados , Parafina , Humanos , Parafina/análise , Hidrocarbonetos Clorados/análise , Comércio , Monitoramento Ambiental/métodos , Internacionalidade , China , Meio Ambiente
2.
Sci Total Environ ; 928: 172267, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38583628

RESUMO

Soils represent crucial sinks for pharmaceuticals and microplastics, making them hotspots for pharmaceuticals and plastic pollution. Despite extensive research on the toxicity of pharmaceuticals and microplastics individually, there is limited understanding of their combined effects on soil biota. This study focused on the earthworm Eisenia fetida as test organism to evaluate the biotoxicity and bioaccumulation of the typical pharmaceutical naproxen and microplastics in earthworms. Results demonstrated that high concentrations of naproxen (100 mg kg-1) significantly increased the malondialdehyde (MDA) content, inducing lipid peroxidation. Even though the low exposure of naproxen exhibits no significant influence to Eisenia fetida, the lipid peroxidation caused by higher concentration than environmental relevant concentrations necessitate attention due to temporal and spatial concentration variability found in the soil environment. Meanwhile, microplastics caused oxidative damage to antioxidant enzymes by reducing the superoxide dismutase (SOD) activity and MDA content in earthworms. Metabolome analysis revealed increased lipid metabolism in naproxen-treated group and reduced lipid metabolism in the microplastic-treated group. The co-exposure of naproxen and microplastics exhibited a similar changing trend to the microplastics-treated group, emphasizing the significant influence of microplastics. The detection of numerous including lipids like 17-Hydroxyandrostane-3-glucuronide, lubiprostone, morroniside, and phosphorylcholine, serves to identify potential biomarkers for naproxen and microplastics exposure. Additionally, microplastics increased the concentration of naproxen in earthworms at sub-organ and subcellular level. This study contributes valuable insights into the biotoxicity and distribution of naproxen and microplastics in earthworms, enhancing our understanding of their combined ecological risk to soil biota.


Assuntos
Microplásticos , Naproxeno , Oligoquetos , Poluentes do Solo , Oligoquetos/efeitos dos fármacos , Naproxeno/toxicidade , Animais , Poluentes do Solo/toxicidade , Microplásticos/toxicidade , Ecotoxicologia , Solo/química , Monitoramento Ambiental
3.
J Environ Sci (China) ; 148: 116-125, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095150

RESUMO

Perfluoroalkyl substances (PFASs) are typical persistent organic pollutants, and their removal is urgently required but challenging. Photocatalysis has shown potential in PFASs degradation due to the redox capabilities of photoinduced charge carriers in photocatalysts. Herein, hexagonal ZnIn2S4 (ZIS) nanosheets were synthesized by a one-pot oil bath method and were well characterized by a series of techniques. In the degradation of sodium p-perfluorous nonenoxybenzenesulfonate (OBS), one kind of representative PFASs, the as-synthesized ZIS showed activity superior to P25 TiO2 under both simulated sunlight and visible-light irradiation. The good photocatalytic performance was attributed to the enhanced light absorption and facilitated charge separation. The pH conditions were found crucial in the photocatalytic process by influencing the OBS adsorption on the ZIS surface. Photogenerated e- and h+ were the main active species involved in OBS degradation in the ZIS system. This work confirmed the feasibility and could provide mechanistic insights into the degradation and defluorination of PFASs by visible-light photocatalysis.


Assuntos
Fluorocarbonos , Luz , Fotólise , Fluorocarbonos/química , Nanoestruturas/química , Catálise , Poluentes Químicos da Água/química , Zinco/química , Índio/química , Modelos Químicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa