Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Brain ; 144(5): 1422-1434, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33970200

RESUMO

Human 4-hydroxyphenylpyruvate dioxygenase-like (HPDL) is a putative iron-containing non-heme oxygenase of unknown specificity and biological significance. We report 25 families containing 34 individuals with neurological disease associated with biallelic HPDL variants. Phenotypes ranged from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spasticity and global developmental delays, sometimes complicated by episodes of neurological and respiratory decompensation. Variants included bona fide pathogenic truncating changes, although most were missense substitutions. Functionality of variants could not be determined directly as the enzymatic specificity of HPDL is unknown; however, when HPDL missense substitutions were introduced into 4-hydroxyphenylpyruvate dioxygenase (HPPD, an HPDL orthologue), they impaired the ability of HPPD to convert 4-hydroxyphenylpyruvate into homogentisate. Moreover, three additional sets of experiments provided evidence for a role of HPDL in the nervous system and further supported its link to neurological disease: (i) HPDL was expressed in the nervous system and expression increased during neural differentiation; (ii) knockdown of zebrafish hpdl led to abnormal motor behaviour, replicating aspects of the human disease; and (iii) HPDL localized to mitochondria, consistent with mitochondrial disease that is often associated with neurological manifestations. Our findings suggest that biallelic HPDL variants cause a syndrome varying from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spastic tetraplegia associated with global developmental delays.


Assuntos
Oxigenases/genética , Paraplegia Espástica Hereditária/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Mutação , Linhagem , Ratos , Peixe-Zebra
3.
PLoS Genet ; 9(8): e1003727, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24009521

RESUMO

Human cancer genomes are highly complex, making it challenging to identify specific drivers of cancer growth, progression, and tumor maintenance. To bypass this obstacle, we have applied array comparative genomic hybridization (array CGH) to zebrafish embryonal rhabdomyosaroma (ERMS) and utilized cross-species comparison to rapidly identify genomic copy number aberrations and novel candidate oncogenes in human disease. Zebrafish ERMS contain small, focal regions of low-copy amplification. These same regions were commonly amplified in human disease. For example, 16 of 19 chromosomal gains identified in zebrafish ERMS also exhibited focal, low-copy gains in human disease. Genes found in amplified genomic regions were assessed for functional roles in promoting continued tumor growth in human and zebrafish ERMS--identifying critical genes associated with tumor maintenance. Knockdown studies identified important roles for Cyclin D2 (CCND2), Homeobox Protein C6 (HOXC6) and PlexinA1 (PLXNA1) in human ERMS cell proliferation. PLXNA1 knockdown also enhanced differentiation, reduced migration, and altered anchorage-independent growth. By contrast, chemical inhibition of vascular endothelial growth factor (VEGF) signaling reduced angiogenesis and tumor size in ERMS-bearing zebrafish. Importantly, VEGFA expression correlated with poor clinical outcome in patients with ERMS, implicating inhibitors of the VEGF pathway as a promising therapy for improving patient survival. Our results demonstrate the utility of array CGH and cross-species comparisons to identify candidate oncogenes essential for the pathogenesis of human cancer.


Assuntos
Hibridização Genômica Comparativa , Neoplasias/genética , Oncogenes , Rabdomiossarcoma Embrionário/genética , Peixe-Zebra/genética , Animais , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Humanos , Hibridização in Situ Fluorescente , Neoplasias/etiologia , Análise de Sequência com Séries de Oligonucleotídeos , Rabdomiossarcoma Embrionário/patologia
4.
Proc Natl Acad Sci U S A ; 109(2): 529-34, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22203992

RESUMO

Copy number variants (CNVs) represent a substantial source of genomic variation in vertebrates and have been associated with numerous human diseases. Despite this, the extent of CNVs in the zebrafish, an important model for human disease, remains unknown. Using 80 zebrafish genomes, representing three commonly used laboratory strains and one native population, we constructed a genome-wide, high-resolution CNV map for the zebrafish comprising 6,080 CNV elements and encompassing 14.6% of the zebrafish reference genome. This amount of copy number variation is four times that previously observed in other vertebrates, including humans. Moreover, 69% of the CNV elements exhibited strain specificity, with the highest number observed for Tubingen. This variation likely arose, in part, from Tubingen's large founding size and composite population origin. Additional population genetic studies also provided important insight into the origins and substructure of these commonly used laboratory strains. This extensive variation among and within zebrafish strains may have functional effects that impact phenotype and, if not properly addressed, such extensive levels of germ-line variation and population substructure in this commonly used model organism can potentially confound studies intended for translation to human diseases.


Assuntos
Variações do Número de Cópias de DNA/genética , Variação Genética , Genômica/métodos , Peixe-Zebra/genética , Animais , Hibridização Genômica Comparativa , Primers do DNA/genética , Genética Populacional , Especificidade da Espécie , Peixe-Zebra/classificação
5.
Proc Natl Acad Sci U S A ; 109(17): 6686-91, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22496589

RESUMO

Copy number variants (CNVs) are a recently recognized class of human germ line polymorphisms and are associated with a variety of human diseases, including cancer. Because of the strong genetic influence on prostate cancer, we sought to identify functionally active CNVs associated with susceptibility of this cancer type. We queried low-frequency biallelic CNVs from 1,903 men of Caucasian origin enrolled in the Tyrol Prostate Specific Antigen Screening Cohort and discovered two CNVs strongly associated with prostate cancer risk. The first risk locus (P = 7.7 × 10(-4), odds ratio = 2.78) maps to 15q21.3 and overlaps a noncoding enhancer element that contains multiple activator protein 1 (AP-1) transcription factor binding sites. Chromosome conformation capture (Hi-C) data suggested direct cis-interactions with distant genes. The second risk locus (P = 2.6 × 10(-3), odds ratio = 4.8) maps to the α-1,3-mannosyl-glycoprotein 4-ß-N-acetylglucosaminyltransferase C (MGAT4C) gene on 12q21.31. In vitro cell-line assays found this gene to significantly modulate cell proliferation and migration in both benign and cancer prostate cells. Furthermore, MGAT4C was significantly overexpressed in metastatic versus localized prostate cancer. These two risk associations were replicated in an independent PSA-screened cohort of 800 men (15q21.3, combined P = 0.006; 12q21.31, combined P = 0.026). These findings establish noncoding and coding germ line CNVs as significant risk factors for prostate cancer susceptibility and implicate their role in disease development and progression.


Assuntos
Cromossomos Humanos Par 12 , Cromossomos Humanos Par 15 , Dosagem de Genes , Predisposição Genética para Doença , Neoplasias da Próstata/genética , Estudos de Casos e Controles , Linhagem Celular Tumoral , Proliferação de Células , Estudos de Coortes , Humanos , Masculino , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/patologia
6.
Mov Disord Clin Pract ; 11(4): 411-423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38258626

RESUMO

BACKGROUND: Genetic prion diseases, including Gerstmann-Sträussler-Scheinker disease (GSS), are extremely rare, fatal neurodegenerative disorders, often associated with progressive ataxia and cognitive/neuropsychiatric symptoms. GSS typically presents as a rapidly progressive cerebellar ataxia, associated with cognitive decline. Late-onset cases are rare. OBJECTIVE: To compare a novel GSS phenotype with six other cases and present pathological findings from a single case. METHODS: Case series of seven GSS patients, one proceeding to autopsy. RESULTS: Case 1 developed slowly progressive gait difficulties at age 71, mimicking a spinocerebellar ataxia, with a family history of balance problems in old age. Genome sequencing revealed a heterozygous c.392G > A (p.G131E) pathogenic variant and a c.395A > G resulting in p.129 M/V polymorphism in the PRNP gene. Probability analyses considering family history, phenotype, and a similar previously reported point mutation (p.G131V) suggest p.G131E as a new pathogenic variant. Clinical features and imaging of this case are compared with those six additional cases harboring p.P102L mutations. Autopsy findings of a case are described and were consistent with the prion pathology of GSS. CONCLUSIONS: We describe a patient with GSS with a novel p.G131E mutation in the PRNP gene, presenting with a late-onset, slowly progressive phenotype, mimicking a spinocerebellar ataxia, and six additional cases with the typical P102L mutation.


Assuntos
Ataxia Cerebelar , Doença de Gerstmann-Straussler-Scheinker , Príons , Ataxias Espinocerebelares , Humanos , Idoso , Doença de Gerstmann-Straussler-Scheinker/diagnóstico , Proteínas Priônicas/genética , Príons/genética , Ataxia Cerebelar/complicações , Ataxias Espinocerebelares/diagnóstico
7.
Neurology ; 100(5): e543-e554, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36289003

RESUMO

BACKGROUND AND OBJECTIVE: Cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is an autosomal recessive neurodegenerative disease characterized by adult-onset and slowly progressive sensory neuropathy, cerebellar dysfunction, and vestibular impairment. In most cases, the disease is caused by biallelic (AAGGG)n repeat expansions in the second intron of the replication factor complex subunit 1 (RFC1). However, a small number of cases with typical CANVAS do not carry the common biallelic repeat expansion. The objective of this study was to expand the genotypic spectrum of CANVAS by identifying sequence variants in RFC1-coding region associated with this condition. METHODS: Fifteen individuals diagnosed with CANVAS and carrying only 1 heterozygous (AAGGG)n expansion in RFC1 underwent whole-genome sequencing or whole-exome sequencing to test for the presence of a second variant in RFC1 or other unrelated gene. To assess the effect of truncating variants on RFC1 expression, we tested the level of RFC1 transcript and protein on patients' derived cell lines. RESULTS: We identified 7 patients from 5 unrelated families with clinically defined CANVAS carrying a heterozygous (AAGGG)n expansion together with a second truncating variant in trans in RFC1, which included the following: c.1267C>T (p.Arg423Ter), c.1739_1740del (p.Lys580SerfsTer9), c.2191del (p.Gly731GlufsTer6), and c.2876del (p.Pro959GlnfsTer24). Patient fibroblasts containing the c.1267C>T (p.Arg423Ter) or c.2876del (p.Pro959GlnfsTer24) variants demonstrated nonsense-mediated mRNA decay and reduced RFC1 transcript and protein. DISCUSSION: Our report expands the genotype spectrum of RFC1 disease. Full RFC1 sequencing is recommended in cases affected by typical CANVAS and carrying monoallelic (AAGGG)n expansions. In addition, it sheds further light on the pathogenesis of RFC1 CANVAS because it supports the existence of a loss-of-function mechanism underlying this complex neurodegenerative condition.


Assuntos
Vestibulopatia Bilateral , Ataxia Cerebelar , Doenças Neurodegenerativas , Doenças do Sistema Nervoso Periférico , Doenças Vestibulares , Adulto , Humanos , Ataxia Cerebelar/genética , Ataxia Cerebelar/diagnóstico , Vestibulopatia Bilateral/genética , Vestibulopatia Bilateral/diagnóstico , Doenças Vestibulares/genética , Síndrome
8.
Sci Adv ; 8(33): eabo7112, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35977029

RESUMO

Stress granules (SGs) are cytoplasmic assemblies in response to a variety of stressors. We report a new neurodevelopmental disorder (NDD) with common features of language problems, intellectual disability, and behavioral issues caused by de novo likely gene-disruptive variants in UBAP2L, which encodes an essential regulator of SG assembly. Ubap2l haploinsufficiency in mouse led to social and cognitive impairments accompanied by disrupted neurogenesis and reduced SG formation during early brain development. On the basis of data from 40,853 individuals with NDDs, we report a nominally significant excess of de novo variants within 29 genes that are not implicated in NDDs, including 3 essential genes (G3BP1, G3BP2, and UBAP2L) in the core SG interaction network. We validated that NDD-related de novo variants in newly implicated and known NDD genes, such as CAPRIN1, disrupt the interaction of the core SG network and interfere with SG formation. Together, our findings suggest the common SG pathology in NDDs.


Assuntos
DNA Helicases , Transtornos do Neurodesenvolvimento , Animais , Camundongos , Transtornos do Neurodesenvolvimento/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA , Grânulos de Estresse
9.
Int J Neonatal Screen ; 7(2)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34071063

RESUMO

Massachusetts began newborn screening (NBS) for Spinal Muscular Atrophy (SMA) following the availability of new treatment options. The New England Newborn Screening Program developed, validated, and implemented a screening algorithm for the detection of SMA-affected infants who show absent SMN1 Exon 7 by Real-Time™ quantitative PCR (qPCR). We screened 179,467 neonates and identified 9 SMA-affected infants, all of whom were referred to a specialist by day of life 6 (average and median 4 days of life). Another ten SMN1 hybrids were observed but never referred. The nine referred infants who were confirmed to have SMA were entered into treatment protocols. Early data show that some SMA-affected children have remained asymptomatic and are meeting developmental milestones and some have mild to moderate delays. The Massachusetts experience demonstrates that SMA NBS is feasible, can be implemented on a population basis, and helps engage infants for early treatment to maximize benefit.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa