Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(24): e2301086, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919923

RESUMO

The direct growth of wafer-scale single crystal two-dimensional (2D) hexagonal boron nitride (h-BN) layer with a controllable thickness is highly desirable for 2D-material-based device applications. Here, for the first time, a facile submicron-spacing vapor deposition (SSVD) method is reported to achieve 2-inch single crystal h-BN layers with controllable thickness from monolayer to tens of nanometers on the dielectric sapphire substrates using a boron film as the solid source. In the SSVD growth, the boron film is fully covered by the same-sized sapphire substrate with a submicron spacing, leading to an efficient vapor diffusion transport. The epitaxial h-BN layer exhibits extremely high crystalline quality, as demonstrated by both a sharp Raman E2g vibration mode (12 cm-1 ) and a narrow X-ray rocking curve (0.10°). Furthermore, a deep ultraviolet photodetector and a ZrS2 /h-BN heterostructure fabricated from the h-BN layer demonstrate its fascinating properties and potential applications. This facile method to synthesize wafer-scale single crystal h-BN layers with controllable thickness paves the way to future 2D semiconductor-based electronics and optoelectronics.

2.
ACS Appl Mater Interfaces ; 16(19): 24899-24907, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38687622

RESUMO

Solid-state quantum emitters are gaining significant attention for many quantum information applications. Hexagonal boron nitride (h-BN) is an emerging host material for generating bright, stable, and tunable single-photon emission with narrow line widths at room temperature. In this work, we present a facile and efficient approach to generate high-density single-photon emitters (SPEs) in mechanically exfoliated h-BN through H- or Ar-plasma treatment followed by high-temperature annealing in air. It is notable that the postannealing is essential to suppress the fluorescence background in photoluminescence spectra and enhance emitter stability. These quantum emitters exhibit excellent optical properties, including high purity, brightness, stability, polarization degree, monochromaticity, and saturation intensity. The effects of process parameters on the quality of quantum emitters were systematic investigated. We find that there exists an optimal plasma power and h-BN thickness to achieve a high SPE density. This work offers a practical avenue for generating SPEs in h-BN and holds promise for future research and applications in quantum photonics.

3.
ACS Appl Mater Interfaces ; 14(5): 7004-7011, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35080841

RESUMO

Wide-band-gap layered semiconductor hexagonal boron nitride (h-BN) is attracting intense interest due to its unique optoelectronic properties and versatile applications in deep ultraviolet optoelectronic and two-dimensional electronic devices. However, it is still a great challenge to directly grow high-quality h-BN on dielectric substrates, and an extremely high substrate temperature or annealing is usually required. In this work, high-quality few-layer h-BN is directly grown on sapphire substrates via ion beam sputtering deposition at a relatively low temperature of 700 °C by introducing NH3 into the growth chamber. Such low growth temperature is attributed to the presence of abundant active N species, originating from the decomposition of NH3 under ion beam irradiation. To further tailor the properties of h-BN, carbon was introduced into the h-BN layer by simultaneously introducing CH4 and NH3 during the growth process, indicating the wide applicability of this approach. Moreover, a deep ultraviolet (DUV) photodetector is also fabricated from a C-doped h-BN layer and exhibits superior performance compared with an intrinsic h-BN device.

4.
Adv Mater ; 34(36): e2204460, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35855612

RESUMO

Perovskite light-emitting diodes (PeLEDs) have received great attention in recent years due to their narrow emission bandwidth and tunable emission spectrum. Efficient red emission is one of most important parts for lighting and displays. Quasi-2D perovskites can deliver high emission efficiency due to the strong carrier confinement, while the external quantum efficiencies (EQE) of red quasi-2D PeLEDs are inefficient at present, which is due to the complex distribution of different n-value phases in quasi-2D perovskite films. In this work, the phase distribution of the quasi-2D perovskite is finely controlled by mixing two different large organic cations, which effectively reduces the amount of smaller n-index phases, meanwhile the passivation of lead and halide defects in perovskite films is realized. Accordingly, the PeLEDs show 25.8% EQE and 1300 cd m-2 maximum brightness at 680 nm, which exhibits the highest performance for red PeLEDs up to now.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa