Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Environ Sci Technol ; 58(2): 1187-1198, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38117945

RESUMO

Atmospheric particles have profound implications for the global climate and human health. Among them, ultrafine particles dominate in terms of the number concentration and exhibit enhanced toxic effects as a result of their large total surface area. Therefore, understanding the driving factors behind ultrafine particle behavior is crucial. Machine learning (ML) provides a promising approach for handling complex relationships. In this study, three ML models were constructed on the basis of field observations to simulate the particle number concentration of nucleation mode (PNCN). All three models exhibited robust PNCN reproduction (R2 > 0.80), with the random forest (RF) model excelling on the test data (R2 = 0.89). Multiple methods of feature importance analysis revealed that ultraviolet (UV), H2SO4, low-volatility oxygenated organic molecules (LOOMs), temperature, and O3 were the primary factors influencing PNCN. Bivariate partial dependency plots (PDPs) indicated that during nighttime and overcast conditions, the presence of H2SO4 and LOOMs may play a crucial role in influencing PNCN. Additionally, integrating additional detailed information related to emissions or meteorology would further enhance the model performance. This pilot study shows that ML can be a novel approach for simulating atmospheric pollutants and contributes to a better understanding of the formation and growth mechanisms of nucleation mode particles.


Assuntos
Poluentes Atmosféricos , Humanos , Poluentes Atmosféricos/análise , Tamanho da Partícula , Projetos Piloto , Monitoramento Ambiental/métodos , Material Particulado/análise
2.
J Environ Sci (China) ; 138: 561-571, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135420

RESUMO

To gain a comprehensive understanding of sources and health risks of trace elements in an area of China with high population densities and low PM2.5 concentrations, 15 trace elements (Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Sn, Ba, Pb) in PM2.5 were monitored from December 2020 to November 2021 in a representative city, Xiamen. The concentrations of trace elements in Xiamen displayed an obvious seasonal variation and were dominated by K, Fe, Al, Ca and Zn. Based on Positive Matrix Factorization analysis, source appointment revealed that the major sources of trace elements in Xiamen were traffic, dust, biomass and firework combustion, industrial manufacture and shipping emission. According to health risk assessment combined with the source appointment results, it indicated that the average noncarcinogenic risk was below the threshold and cancer risk of four hazardous metals (Cr, Ni, As, Pb) exceeded the threshold (10-6). Traffic-related source had almost half amount of contribution to the health risk induced by PM2.5-bound trace elements. During the dust transport period or Spring Festival period, the health risks exceeded an acceptable threshold even an order of magnitude higher, suggesting that the serious health risks still existed in low PM2.5 environment at certain times. Health risk assessment reminded that the health risk reduction in PM2.5 at southeastern China should prioritize traffic-related hazardous trace elements and highlighted the importance of controlling vehicles emissions in the future.


Assuntos
Poluentes Atmosféricos , Oligoelementos , Material Particulado/análise , Poluentes Atmosféricos/análise , Oligoelementos/análise , Chumbo/análise , Monitoramento Ambiental , Poeira/análise , China
3.
Environ Sci Technol ; 57(42): 15956-15967, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37842878

RESUMO

Organic aerosols (OA) have gained attention as a substantial component of atmospheric aerosols owing to their impact on atmospheric visibility, climate, and human health. Although oxygenated organic molecules (OOMs) are essential contributors to OA formation, the sources, transformations, and fates of the OOMs are not fully understood. Herein, anthropogenic OOMs (AOOMs), anthropogenic volatile organic compounds (AVOCs), and OA were concurrently measured in Xiamen, a coastal city in southeastern China. Our results show that the AOOMs exhibited a high nitrogen content (76%) and a low oxidation degree. Strong photochemical processes of aromatic VOCs were the predominant sources of AOOMs. Also, NOx concentrations and the occurrence of multigeneration OH radical oxidations were the critical factors that might influence the formation of AOOMs. Finally, the newly developed aerosol dynamic model's results show that more than 35% of the OA mass growth rate is attributed to the gas-particle partitioning of AOOMs. Further sensitivity testing demonstrates that the contribution of AOOMs to OA growth is significantly enhanced during high-particulate-concentration periods, especially under low-temperature conditions. This study emphasizes the vital role of photochemically produced AOOMs derived from AVOCs in OA growth in a coastal urban atmosphere.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Carvão Mineral , Atmosfera , Aerossóis/análise , China , Poluentes Atmosféricos/análise
4.
J Environ Sci (China) ; 119: 106-118, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35934455

RESUMO

The gaseous or particulate forms of divalent mercury (HgII) significantly impact the spatial distribution of atmospheric mercury concentration and deposition flux (FLX). In the new nested-grid GEOS-Chem model, we try to modify the HgII gas-particle partitioning relationship with synchronous and hourly observations at four sites in China. Observations of gaseous oxidized Hg (GOM), particulate-bound Hg (PBM), and PM2.5 were used to derive an empirical gas-particle partitioning coefficient as a function of temperature (T) and organic aerosol (OA) concentrations under different relative humidity (RH). Results showed that with increasing RH, the dominant process of HgII gas-particle partitioning changed from physical adsorption to chemical desorption. And the dominant factor of HgII gas-particle partitioning changed from T to OA concentrations. We thus improved the simulated OA concentration field by introducing intermediate-volatility and semi-volatile organic compounds (I/SVOCs) emission inventory into the model framework and refining the volatile distributions of I/SVOCs according to new filed tests in the recent literatures. Finally, normalized mean biases (NMBs) of monthly gaseous element mercury (GEM), GOM, PBM, WFLX were reduced from -33%-29%, 95%-300%, 64%-261%, 117%-122% to -13%-0%, -20%-80%, -31%-50%, -17%-23%. The improved model explains 69%-98% of the observed atmospheric Hg decrease during 2013-2020 and can serve as a useful tool to evaluate the effectiveness of the Minamata Convention on Mercury.


Assuntos
Poluentes Atmosféricos , Mercúrio , Aerossóis , Poluentes Atmosféricos/análise , Poeira , Monitoramento Ambiental/métodos , Gases , Mercúrio/análise
5.
J Nutr ; 151(3): 503-512, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33571370

RESUMO

BACKGROUND: Diet-induced disordered phospholipid metabolism and disturbed macrophage metabolism contribute to the pathogenesis of metabolic diseases. However, the effects of oleate, a main dietary fatty acid, on macrophage phospholipid metabolism are unclear. OBJECTIVES: We aimed to discover oleate-induced disorders of macrophage phospholipid metabolism and potential therapeutic targets for treating diet-related metabolic diseases. METHODS: RAW 264.7 cells were exposed to 65 µg oleate/mL, within the blood concentration range of humans and mice, to trigger disorders of phospholipid metabolism. Meanwhile, WY-14643 and pioglitazone, 2 drugs widely used for treating metabolic diseases, were employed to prevent oleate-induced disorders of macrophage phospholipid metabolism. Subsequently, an untargeted metabolomics approach based on liquid chromatography-mass spectrometry was used to discover relevant metabolic disorders and potential therapeutic targets. RESULTS: We showed that 196 metabolites involved in phospholipid metabolism were altered upon oleate treatment and interventions of WY-14643 and pioglitazone (P < 0.05, 2-tailed Mann-Whitney U test). Notably, most lysophospholipids were decreased, whereas most phospholipids were increased in oleate-treated macrophages. Phosphatidylethanolamines accumulated most among phospholipids, and their acyl chain polyunsaturation increased in oleate-treated macrophages. Additionally, saturated fatty acids were decreased, whereas polyunsaturated fatty acids were increased in oleate-treated macrophages. Furthermore, changes in phosphatidylglycerols, phosphatidylinositols, cardiolipins, phosphatidates, lysophosphatidylglycerols, and acylcarnitines in oleate-treated macrophages could be attenuated or even abolished by WY-14643 and/or pioglitazone treatment. CONCLUSIONS: Oleate induced accumulation of various phospholipids, increased acyl chain polyunsaturation of phosphatidylethanolamines, and decreased lysophospholipids in RAW 264.7 macrophages. This study suggests macrophage phospholipid and fatty acid metabolism as potential therapeutic targets for intervening diet-related metabolic diseases.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/metabolismo , Doenças Metabólicas/induzido quimicamente , Metabolômica , Ácido Oleico/farmacologia , Fosfolipídeos/metabolismo , Animais , Cromatografia Líquida , Espectrometria de Massas , Camundongos , Modelos Animais , Pioglitazona/farmacologia , Pirimidinas/farmacologia , Células RAW 264.7
6.
Ecotoxicol Environ Saf ; 206: 111406, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007542

RESUMO

Environmental air pollutants pose significant threats to public health, especially the toxicity and diseases caused by the atmospheric fine particulate matters (PM2.5). Since the health risks vary with both the concentrations and compositions of PM2.5 which are determined by aerosol sources, how are their toxic effects relevant to the pollution level becomes an important issue, such as the haze episodes covering clean and polluted days. With the transition from non-pollution to pollution stage, daily PM2.5 samples were collected from both the urban and industrial areas of Nanjing city, eastern China, covering a typical haze event in autumn-winter. Their unpropitious effects on human lung epithelial cells (A549) were compared by in vitro toxicity assays and chemical component analysis. Both air levels and cytotoxic effects of PM2.5 varied with the transition of haze event. Although the concentration of PM2.5 in air is of course the highest in pollution stage driven by local stable meteorological condition, unit mass of them posed higher toxicity (lower cell viability and higher IL-6) but induced lower cell oxidative (evidences of ROS and NQO1 mRNA expression) and inflammatory cytokine TNF-α responses than those particles during non-pollution stage. These patterns were explained by the metals and water-soluble components decreased with the haze development. Non-soluble particulate carbonaceous aerosol compositions might play a significant role in inducing cytotoxicity. Moreover, the regional pattern of episode pollution weakened the spatial variation within a city scale. Since the haze development intensified both the quantity and toxicity of PM2.5 in air, the health risks of overall aerosol exposure were synthetically amplified during haze weather, so the increased air particles with higher toxic components from fuel combustion sources should be key targets of pollution control.


Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Pulmão/efeitos dos fármacos , Material Particulado/toxicidade , Células A549 , Aerossóis , Poluentes Atmosféricos/análise , Sobrevivência Celular/efeitos dos fármacos , China , Cidades , Humanos , Indústrias , Inflamação , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/análise , Estações do Ano , Tempo (Meteorologia)
7.
J Environ Sci (China) ; 91: 237-245, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32172973

RESUMO

CuSO4/TiO2 catalysts with high catalytic activity and excellent resistant to SO2 and H2O, were thought to be promising catalysts used in Selective catalytic reduction of nitrogen oxides by NH3. The performance of catalysts is largely affected by calcination temperature. Here, effects of calcination temperature on physicochemical property and catalytic activity of CuSO4/TiO2 catalysts were investigated in depth. Catalyst samples calcined at different temperatures were prepared first and then physicochemical properties of the catalyst were characterized by N2 adsorption-desorption, X-ray diffraction, thermogravimetric analysis, Raman spectra, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed desorption of NH3, temperature-programmed reduction of H2 and in situ diffuse reflectance infrared Fourier transform spectroscopy. Results revealed that high calcination temperature had three main effects on the catalyst. First, sintering and anatase transform into rutile with increase of calcination temperature, causing a decrement of specific surface area. Second, decomposition of CuSO4 under higher calcination temperature, resulting in disappears of Brønsted acid sites (S-OH), which had an adverse effect on surface acidity. Third, CuO from the decomposition of CuSO4 changed surface reducibility of the catalyst and favored the process of NH3 oxidation to nitrogen oxides (NOx). Thus, catalytic activity of the catalyst calcined under high temperatures (≥600°C) decreased largely.


Assuntos
Amônia , Titânio , Catálise , Oxirredução , Temperatura
8.
J Environ Manage ; 245: 273-281, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31158679

RESUMO

Organic pollutants are important harmful components in atmospheric fine particulate matters (PM2.5), health risks of which varied with temporal and spatial distributions. To clarify the characteristics of atmospheric organic pollution, the concentrations, sources, and human health risks of typical organic compositions in PM2.5 samples from both industrial and urban areas of Nanjing in eastern China were investigated monthly for a year. Results showed that, the concentrations of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and n-alkanes were higher in winter and spring than those in summer and autumn. The organic pollution was slightly higher in industrial than urban area, though the PAHs in autumn and the n-alkanes in warm season (summer and autumn) were higher in urban area. With regards to the pollutant sources, the atmospheric PAHs were dominated by motor vehicle exhaust in the urban area, and combined with coal combustion emission in the industrial area. Airborne n-alkanes were mainly from biological source accompanied by fossil fuel combustion in industrial area. The PM2.5-bound PAHs indicated higher risks to adults in industrial area than in urban area with the seasonal patterns: winter > spring > autumn > summer. More attention should be paid to the health risks of exposure to organic pollutants accumulated in PM2.5 during cold season. Controlling vehicle emissions might be the key measure for alleviating atmospheric PAHs and n-alkanes pollution in megacities, while coal purification can be an effective control method in industrial areas.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Adulto , China , Monitoramento Ambiental , Humanos , Material Particulado , Estações do Ano
9.
J Environ Sci (China) ; 80: 257-266, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30952343

RESUMO

Light-absorbing carbonaceous aerosols including black carbon (BC) and brown carbon (BrC) play significant roles in atmospheric radiative properties. One-year measurements of aerosol light absorption at multi-wavelength were continuously conducted in Xiamen, southeast of China in 2014 to determine the light absorption properties including absorption coefficients (σabs) and absorption Ångström exponent (AAE) in the coastal city. Light absorptions of BC and BrC with their contributions to total light absorption were further quantified. Mean σabs at 370 nm and 880 nm were 56.6 ±â€¯34.3 and 16.5 ±â€¯11.2 Mm-1, respectively. σabs presented a double-peaks diurnal pattern with the maximum in the morning and the minimum in the afternoon. σabs was low in warm seasons and high in cold seasons. AAE ranged from 0.26 to 2.58 with the annual mean of 1.46, implying that both fossil fuel combustion and biomass burning influenced aerosol optical properties. σabs of BrC at 370 nm was 24.0 ±â€¯5.7 Mm-1, contributing 42% to the total absorption. The highest AAE (1.52 ±â€¯0.02) and largest BrC contributions (47% ±â€¯4%) in winter suggested the significant influence of biomass burning on aerosol light absorption. Long-distance air masses passing through North China Plain and the Yangtze River Delta led to high AAE and BrC contributions. High AAE value of 1.46 in July indicated that long-range transport of the air pollutants from intense biomass burning in Southeast Asia would affect aerosol light absorption in Southeast China. The study will improve the understanding of light absorption properties of aerosols and the optical impacts of BrC in China.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Absorção Fisico-Química , China , Combustíveis Fósseis , Material Particulado
10.
J Environ Sci (China) ; 52: 293-304, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28254051

RESUMO

Taiwan Strait is a special channel for subtropical East Asian Monsoon and its western coast is an important economic zone in China. In this study, a suburban site in the city of Xiamen on the western coast of Taiwan Strait was selected for fine aerosol study to improve the understanding of air pollution sources in this region. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and an Aethalometer were deployed to measure fine aerosol composition with a time resolution of 5 min from May 1 to 18, 2015. The average mass concentration of PM1 was 46.2 ± 26.3 µg/m3 for the entire campaign. Organics (28.3%), sulfate (24.9%), and nitrate (20.6%) were the major components in the fine particles, followed by ammonium, black carbon (BC), and chloride. Evolution of nitrate concentration and size distribution indicated that local NOx emissions played a key role in high fine particle pollution in Xiamen. In addition, organic nitrate was found to account for 9.0%-13.8% of the total measured nitrate. Positive Matrix Factorization (PMF) conducted with high-resolution organic mass spectra dataset differentiated the organic aerosol into three components, including a hydrocarbon-like organic aerosol (HOA) and two oxygenated organic aerosols (SV-OOA and LV-OOA), which on average accounted for 27.6%, 28.8%, and 43.6% of the total organic mass, respectively. The relationship between the mass concentration of submicron particle species and wind further confirmed that all major fine particle species were influenced by both strong local emissions in the southeastern area of Xiamen and regional transport through the Taiwan Strait.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Monitoramento Ambiental , Aerossóis/análise , Poluição do Ar/estatística & dados numéricos , Nitratos , Material Particulado/análise , Taiwan , Vento
12.
Environ Sci Technol ; 50(5): 2371-80, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26863412

RESUMO

We performed incubation experiments using seawaters from representative marine environments of the eastern Asian seas to determine the mercury (Hg) available for photoreduction (Hgr(II)), to investigate the Hg redox reaction kinetics, and to explore the effect of environmental factors and water chemistry on the Hg redox chemistry. Results show that Hgr(II) accounted for a considerable fraction of total Hg (THg) (%Hgr(II)/THg: 24.90 ± 10.55%, n = 27) and positively correlated with THg. Filtration decreased the Hgr(II) pool of waters with high suspended particulate matter (SPM). The positive linear relationships were found between pseudo-first order rate constants of gross Hg(II) photoreduction (kr) and gross Hg(0) photo-oxidation (ko) with photosynthetically active radiation (PAR). Under the condition of PAR of 1 m mol m(-2) s(-1), the kr were significantly (p < 0.05) lower than ko (kr/ko: 0.86 ± 0.22). The Hg(0) dark oxidation were significantly higher than the Hg(II) dark reduction. The Hg(II) dark reduction was positively correlated to THg, and the anaerobic condition favored the Hg(II) dark reduction. Filtration significantly influenced the Hg photoredox chemistry of waters with high SPM. UVB radiation was important for both Hg(II) photoreduction and Hg(0) photo-oxidation, and the role of other wavebands in photoinduced transformations of Hg varied with the water chemistry.


Assuntos
Mercúrio/química , Oceanos e Mares , Água do Mar/química , Poluentes Químicos da Água/análise , Poluição da Água/análise , Água/química , Aerobiose , Anaerobiose , Ásia Oriental , Filtração , Geografia , Cinética , Oxirredução , Material Particulado/análise , Raios Ultravioleta
13.
J Environ Sci (China) ; 47: 100-108, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27593277

RESUMO

The regeneration of commercial SCR (Selective Catalyst Reduction) catalysts deactivated by Pb and other elements was studied. The deactivated catalyst samples were prepared by chemical impregnation with mixed solution containing K2SO4, Na2SO4, CaSO4, Pb(NO3)2 and NH4H2PO4. A novel method combining Ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) and H2SO4 solution (viz. catalysts treated by dilute EDTA-2Na and H2SO4 solution in sequence) was used to recover the activity of deactivated samples, and the effect was compared with single H2SO4, oxalic acid, acetic acid, EDTA or HNO3 solutions. The surface structure, acidity and reducibility of samples were characterized by N2 adsorption-desorption, inductively coupled plasma optical emission spectrometer (ICP-OES), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF), H2-temperature programmed section (H2-TPR), NH3-temperature programmed desorption (NH3-TPD) and in situ DRIFTS. Impurities caused a decrease of specific surface area and surface reducibility, as well as Brønsted acid sites, and therefore led to severe deactivation of the SCR catalyst. The use of an acid solution alone possibly eliminated the impurities on the deactivated catalyst to some extent, and also increased the specific surface area and Brønsted acid sites and promoted the surface reducibility, thus recovered the activity partially. The combination of EDTA-2Na and H2SO4 could remove most of the impurities and improve the activity significantly. The removal of Pb should be an important factor for regeneration. Due to a high removal rate for Pb and other impurities, the combination of EDTA-2Na and H2SO4 solutions provided the best efficiency.


Assuntos
Compostos Inorgânicos/química , Chumbo/química , Oxirredução , Adsorção , Modelos Químicos , Temperatura
14.
Biochem Biophys Res Commun ; 456(2): 615-20, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25498543

RESUMO

Neuropathic pain is one of the most common chronic complications of diabetes mellitus, one hallmark of which is tactile allodynia. However, the molecular mechanisms underlying tactile allodynia are not well understood. It has been demonstrated that microRNAs (miRNAs) are essential regulators of gene expression in the nervous system where they contribute to neuronal plasticity. Thus, in this study, we investigated the differentially expressed microRNAs in the lumbar spinal dorsal horn of streptozotocin (STZ)-induced diabetic neuropathic pain (DNP) mice and vehicle controls. Results from miRNA microarrays showed that 42 miRNAs were significantly altered in DNP spinal cord tissue (P<0.05, fold change: ⩾ 2) compared with control sample. Among them, 21 miRNAs were significantly up-regulated while the other 21 down-regulated. Further validation by quantitative real-time polymerase chain reaction (qRT-PCR) indicated that the 2 significant differentially expressed candidate miRNAs (miR-184-5p and miR-190a-5p) in DNP tissue showed the same changes as in the microarray analysis. The bioinformatics analysis revealed that some of the differentially expressed miRNAs after DNP were potential regulators of some inflammation associated with genes that are known to be involved in the pathogenesis of DNP. These findings suggest that aberrant expression of miRNAs may contribute to the pathogenesis of DNP and are potential targets for therapeutic interventions following DNP.


Assuntos
Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/genética , MicroRNAs/biossíntese , Neuralgia/etiologia , Neuralgia/genética , Animais , Glicemia/análise , Neuropatias Diabéticas/sangue , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Neuralgia/sangue , Análise de Sequência com Séries de Oligonucleotídeos , Limiar da Dor , Reação em Cadeia da Polimerase em Tempo Real
15.
Can J Microbiol ; 61(10): 723-33, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26223001

RESUMO

Root-associated microbial communities are very important for biogeochemical cycles in wetland ecosystems and help to elaborate the mechanisms of plant invasions. In the estuary of Jiulong River (China), Spartina alterniflora has widely invaded Kandelia obovata-dominated habitats, offering an opportunity to study the influence of root-associated bacteria. The community structures of endophytic and rhizosphere bacteria associated with selected plant species were investigated using the barcoded Illumina paired-end sequencing technique. The diversity indices of bacteria associated with the roots of S. alterniflora were higher than those of the transition stands and K. obovata monoculture. Using principal coordinate analysis with UniFrac metrics, the comparison of ß-diversity showed that all samples could be significantly clustered into 3 major groups, according to the bacteria communities of origin. Four phyla, namely Proteobacteria, Bacteroidetes, Chloroflexi, and Firmicutes, were enriched in the rhizoplane of both salt marsh plants, while they shared higher abundances of Cyanobacteria and Proteobacteria among endophytic bacteria. Members of the phyla Spirochaetes and Chloroflexi were found among the endophytic bacteria of S. alterniflora and K. obovata, respectively. One of the interesting findings was that endophytes were more sensitive in response to plant invasion than were rhizosphere bacteria. With linear discriminate analysis, we found some predominant rhizoplane and endophytic bacteria, including Methylococcales, Pseudoalteromonadacea, Clostridium, Vibrio, and Desulfovibrio, which have the potential to affect the carbon, nitrogen, and sulfur cycles. Thus, the results provide clues to the isolation of functional bacteria and the effects of root-associated microbial groups on S. alterniflora invasions.


Assuntos
Bactérias/classificação , Raízes de Plantas/microbiologia , Poaceae/microbiologia , Rhizophoraceae/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , China , Ecossistema , Endófitos , Estuários , Sedimentos Geológicos/microbiologia , Rizosfera , Rios , Áreas Alagadas
16.
Zhonghua Zhong Liu Za Zhi ; 37(5): 336-41, 2015 May.
Artigo em Chinês | MEDLINE | ID: mdl-26463022

RESUMO

OBJECTIVE: The aim of this study was to clarify whether the fusion of bone marrow mesenchymal stem cells (MSCs) with tumor cells can promote tumor angiogensis. METHODS: Human glioma stem/progenitor cells (GSPCs) (SU3 cells) were transfected with red fluorescent protein (RFP) gene. Bone marrow mesenchymal stem cells (MSCs) were harvested from nude mice with whole-body green fluorescent protein (GFP) gene expression. Then the two kinds of cells were co-cultured in vitro. At the same time SU3-RFP was transplanted into the brain of GFP-expressing nude mice to establish xenograft tumors. The co-cultured cells, GFP/RFP double positive (yellow) cells and blood vessels obtained from the xenograft tumors were observed under fluorescent microscope and laser scanning confocal microscope. RESULTS: After five passages in vitro, MSCs maintained the proliferative activity and highly expressed CD105. CD105 was also expressed in the femurs of GFP-expressing nude mice, tumor cells, blood vessels of SU3 xenograft tumors, and clinical malignant gliomas. When MSCs were co-cultured with SU3-RFP, the ratio of yellow cells co-expressing RFP and GFP was significantly increased after extended time and continuous passages. According to the flow cytometry, yellow cells co-expressing RFP and GFP were 83.7% of the cultured cells. In tissue slices of the xenograft tumors, bundles of yellow vessel-like structure and cross-sectioned yellow vascular wall structures including vascular wall stroma cells were observed with RFP and GFP expression, and were identified as de novo formed vessels derived from fusion of MSCs with SU3-RFP cells. CONCLUSION: Cell fusion occurs between tumor cells and host MSCs and it promotes tumor angiogenesis.


Assuntos
Células da Medula Óssea/fisiologia , Glioma , Células-Tronco Mesenquimais , Neovascularização Patológica , Animais , Comunicação Celular , Fusão Celular , Células Cultivadas , Proteínas de Fluorescência Verde , Humanos , Proteínas Luminescentes , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Neoplasias , Células-Tronco , Transfecção , Transplante Heterólogo , Proteína Vermelha Fluorescente
17.
J Appl Toxicol ; 34(6): 675-87, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23943255

RESUMO

Exposure to airborne particulate matter (PM)2.5, a PM with aerodynamic diameter of less than 2.5 µm, is known to be associated with a variety of adverse health effects. However, the molecular mechanisms involved in fine PM toxicity are still not well characterized. The present study aims to provide new insights into the cytotoxicity of PM2.5 on human lung epithelial cells (A549) at the proteomic level. Two-dimensional difference gel electrophoresis revealed a total of 27 protein spots, whose abundance were significantly altered in A549 cells exposed to water-soluble PM2.5 extracts (WSPE). Among these, 12 spots were upregulated while 15 were downregulated. Twenty-two proteins were further identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass/mass spectrometry and database search. The results revealed that oxidative stress, metabolic disturbance, dysregulation of signal transduction, aberrant protein synthesis and degradation, as well as cytoskeleton disorganization are major factors contributing to WSPE-mediated toxicity in human lung cells. It is further proposed that induction of apoptosis through p53, c-Myc and p21 pathways may be one of the key toxicological events occurred in A549 cells under WSPE stress. The data obtained here will aid our understanding of the toxic mechanisms related to PM2.5, and develop useful biomarkers indicative of inhalable PM2.5 exposure.


Assuntos
Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Material Particulado/toxicidade , Proteômica/métodos , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Western Blotting , Linhagem Celular , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Eletroforese em Gel Bidimensional , Metabolismo Energético/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/metabolismo , Pulmão/patologia , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Biossíntese de Proteínas/efeitos dos fármacos , Mapeamento de Interação de Proteínas , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Sci Total Environ ; 915: 170161, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38232847

RESUMO

China faces a dual challenge of improving air quality and reducing greenhouse gas (GHG) emissions. Stringent clean air actions gradually narrow the end-of-pipe (EOP) pollution control potential. Meanwhile, pursuing carbon peaking will reduce air pollution and health risks. However, the impact on air quality and health gains in individual Chinese provinces has not been assessed with a specific focus on local policies. Here, typical shared socio-economic pathways (SSPs) and local policies (i.e., business as usual, BAU; end-of-pipe controls, EOP; co-control mitigation, CCM) are combined to set three scenarios (i.e., BAU-SSP3, EOP-SSP4, CCM-SSP1). Under these three scenarios, we couple the Low Emissions Analysis Platform (LEAP) model, an air quality model and health risk assessment methodology to evaluate the characteristics of carbon peaking in Fujian Province. PM2.5 air quality and impacts on public health are assessed, using the metric of the deaths attributable to PM2.5 pollution (DAPP). The results show that energy-related CO2 emissions will only peak before 2030 in the CCM-SSP1 scenario. In this context, air pollutant emission pathways reveal that mitigation is limited under the EOP-SSP4 scenario, necessitating further mitigation under the CCM-SSP1 scenario. The annual average PM2.5 level is projected to be 16.5 µg·m-3 in 2035 with a corresponding decrease in DAPP of 297 (95 % confidence intervals: 217-308) compared with that of 2020. Despite the significant improvements in PM2.5 air quality and health gains under the CCM-SSP1 scenario, reaching the 5 µg·m-3 target of the World Health Organization (WHO) remains difficult. Furthermore, population aging will require stronger PM2.5 mitigation to enhance health gains. This study provides a valuable reference for other developing regions to co-control air pollution and GHGs.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado/análise , Carbono/análise , Poluição do Ar/análise , Poluentes Atmosféricos/análise , China
19.
Environ Pollut ; 356: 124355, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38871170

RESUMO

Due to the significance of atmospheric HONO as a reservoir for radicals and the presence of substantial unknown sources of HONO, there is a pressing need for accurate and consistent measurement of its concentration. In this study, we compared the measurements obtained from the monitor for aerosols and gases in ambient air (MARGA) based on wet chemical method with those from the incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) based on optical method to assess the suitability of the MARGA instrument for accurate HONO detection. The diurnal patterns obtained by the two instruments are similar, with peaks at 8 a.m. and lows at 5 p.m. Over the course of the observation period, it was often observed that HONO concentrations recorded by the MARGA instrument consistently exceeded those obtained through the IBBCEAS technique, accounting for approximately 91.33% of the total observation time. Throughout the entire observation period, the R2 value between the two instruments was 0.49, indicating relatively good correlation. However, with a slope of only 0.27, it suggests poor agreement between the two instruments. Furthermore, the R2 and slopes between the two instruments vary with the seasons and day-night. The larger the quartile values of NO2, NH3, and BC, the greater the slopes of both MARGA and IBBCEAS instruments, and the higher the concentrations of NO2, NH3, and BC (indicator of semivolatile oxidizable hydrocarbons), the greater the differences between the two instruments, all indicating that NH3 may promote the reaction of NO2 with semivolatile oxidizable hydrocarbons to produce HONO. The O3 with its strong oxidizing properties may cause underestimation in the MARGA instrument by oxidizing NO2- to NO3- in the absorbing solution. It is challenging to derive a universal correction formula due to the interference of various chemical substances. Hence, MARGA should not be used for HONO research in the future.

20.
Toxicol In Vitro ; 98: 105828, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621549

RESUMO

Fine particulates in city air significantly impact human health, but the hazardous compositional mechanisms are still unclear. Besides the toxicity of environmental PM2.5 to in vitro human lung epithelial cells (A549), the independent cytotoxicity of PM2.5-bound water-soluble (WS-PM2.5) and water-insoluble (WIS-PM2.5) fractions were also compared by cell viability, oxidative stress (reactive oxygen species, ROS), and inflammatory injury (IL-6 and TNF-α). The cytotoxicity of PM2.5 varied significantly by sampling season and place, with degrees greater in winter and spring than in summer and autumn, related to corresponding trend of air PM2.5 level, and also higher in industrial than urban site, although their PM2.5 pollution levels were comparable. The PM2.5 bound metals (Ni, Cr, Fe, and Mn) may contribute to cellular injury. Both WS-PM2.5 and WIS-PM2.5 posed significant cytotoxicity, that WS-PM2.5 was more harmful than WIS-PM2.5 in terms of decreasing cell viability and increasing inflammatory cytokines production. In particular, industrial samples were usually more toxic than urban samples, and those from summer were generally less toxic than other seasons. Hence, in order to mitigate the health risks of PM2.5 pollution, the crucial targets might be components of heavy metals and soluble fractions, and sources in industrial areas, especially during the cold seasons.


Assuntos
Poluentes Atmosféricos , Sobrevivência Celular , Pulmão , Material Particulado , Espécies Reativas de Oxigênio , Humanos , Material Particulado/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade , Células A549 , Pulmão/efeitos dos fármacos , Pulmão/citologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Solubilidade , Interleucina-6/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Água/química , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa