Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
J Virol ; 96(16): e0102722, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35916536

RESUMO

Protein acetylation plays an important role during virus infection. Thus, it is not surprising that viruses always evolve elaborate mechanisms to regulate the functions of histone deacetylases (HDACs), the essential transcriptional and epigenetic regulators for deacetylation. Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes severe diarrhea in suckling piglets and has the potential to infect humans. In this study, we found that PDCoV infection inhibited cellular HDAC activity. By screening the expressions of different HDAC subfamilies after PDCoV infection, we unexpectedly found that HDAC2 was cleaved. Ectopic expression of HDAC2 significantly inhibited PDCoV replication, while the reverse effects could be observed after treatment with an HDAC2 inhibitor (CAY10683) or the knockdown of HDAC2 expression by specific siRNA. Furthermore, we demonstrated that PDCoV-encoded nonstructural protein 5 (nsp5), a 3C-like protease, was responsible for HDAC2 cleavage through its protease activity. Detailed analyses showed that PDCoV nsp5 cleaved HDAC2 at glutamine 261 (Q261), and the cleaved fragments (amino acids 1 to 261 and 262 to 488) lost the ability to inhibit PDCoV replication. Interestingly, the Q261 cleavage site is highly conserved in HDAC2 homologs from other mammalian species, and the nsp5s encoded by seven tested mammalian coronaviruses also cleaved HDAC2, suggesting that cleaving HDAC2 may be a common strategy used by different mammalian coronaviruses to antagonize the antiviral role of HDAC2. IMPORTANCE As an emerging porcine enteropathogenic coronavirus that possesses the potential to infect humans, porcine deltacoronavirus (PDCoV) is receiving increasing attention. In this work, we found that PDCoV infection downregulated cellular histone deacetylase (HDAC) activity. Of particular interest, the viral 3C-like protease, encoded by the PDCoV nonstructural protein 5 (nsp5), cleaved HDAC2, and this cleavage could be observed in the context of PDCoV infection. Furthermore, the cleavage of HDAC2 appears to be a common strategy among mammalian coronaviruses, including the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to antagonize the antiviral role of HDAC2. To our knowledge, PDCoV nsp5 is the first identified viral protein that can cleave cellular HDAC2. Results from our study provide new targets to develop drugs combating coronavirus infection.


Assuntos
COVID-19 , Deltacoronavirus/metabolismo , Histona Desacetilase 2/metabolismo , Doenças dos Suínos , Animais , Humanos , Mamíferos , Peptídeo Hidrolases , SARS-CoV-2 , Suínos , Doenças dos Suínos/metabolismo , Doenças dos Suínos/virologia
2.
J Virol ; 96(8): e0003722, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35389264

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to pose an enormous threat to economic activity and public health worldwide. Previous studies have shown that the nonstructural protein 5 (nsp5, also called 3C-like protease) of alpha- and deltacoronaviruses cleaves Q231 of the NF-κB essential modulator (NEMO), a key kinase in the RIG-I-like receptor pathway, to inhibit type I interferon (IFN) production. In this study, we found that both SARS-CoV-2 nsp5 and SARS-CoV nsp5 cleaved NEMO at multiple sites (E152, Q205, and Q231). Notably, SARS-CoV-2 nsp5 exhibited a stronger ability to cleave NEMO than SARS-CoV nsp5. Sequence and structural alignments suggested that an S/A polymorphism at position 46 of nsp5 in SARS-CoV versus SARS-CoV-2 may be responsible for this difference. Mutagenesis experiments showed that SARS-CoV-2 nsp5 (S46A) exhibited poorer cleavage of NEMO than SARS-CoV-2 nsp5 wild type (WT), while SARS-CoV nsp5 (A46S) showed enhanced NEMO cleavage compared with the WT protein. Purified recombinant SARS-CoV-2 nsp5 WT and SARS-CoV nsp5 (A46S) proteins exhibited higher hydrolysis efficiencies than SARS-CoV-2 nsp5 (S46A) and SARS-CoV nsp5 WT proteins in vitro. Furthermore, SARS-CoV-2 nsp5 exhibited stronger inhibition of Sendai virus (SEV)-induced interferon beta (IFN-ß) production than SARS-CoV-2 nsp5 (S46A), while introduction of the A46S substitution in SARS-CoV nsp5 enhanced suppression of SEV-induced IFN-ß production. Taken together, these data show that S46 is associated with the catalytic activity and IFN antagonism by SARS-CoV-2 nsp5. IMPORTANCE The nsp5-encoded 3C-like protease is the main coronavirus protease, playing a vital role in viral replication and immune evasion by cleaving viral polyproteins and host immune-related molecules. We showed that both SARS-CoV-2 nsp5 and SARS-CoV nsp5 cleave the NEMO at multiple sites (E152, Q205, and Q231). This specificity differs from NEMO cleavage by alpha- and deltacoronaviruses, demonstrating the distinct substrate recognition of SARS-CoV-2 and SARS-CoV nsp5. Compared with SARS-CoV nsp5, SARS-CoV-2 nsp5 encodes S instead of A at position 46. This substitution is associated with stronger catalytic activity, enhanced cleavage of NEMO, and increased interferon antagonism of SARS-CoV-2 nsp5. These data provide new insights into the pathogenesis and transmission of SARS-CoV-2.


Assuntos
Proteases 3C de Coronavírus , Interferon Tipo I , SARS-CoV-2 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Antivirais , COVID-19/imunologia , COVID-19/virologia , Proteases 3C de Coronavírus/metabolismo , Humanos , Evasão da Resposta Imune/genética , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/virologia , Replicação Viral/genética
3.
Phys Rev Lett ; 130(21): 216704, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37295077

RESUMO

Gapped fracton phases of matter generalize the concept of topological order and broaden our fundamental understanding of entanglement in quantum many-body systems. However, their analytical or numerical description beyond exactly solvable models remains a formidable challenge. Here we employ an exact 3D quantum tensor-network approach that allows us to study a Z_{N} generalization of the prototypical X cube fracton model and its quantum phase transitions between distinct topological states via fully tractable wave function deformations. We map the (deformed) quantum states exactly to a combination of a classical lattice gauge theory and a plaquette clock model, and employ numerical techniques to calculate various entanglement order parameters. For the Z_{N} model we find a family of (weakly) first-order fracton confinement transitions that in the limit of N→∞ converge to a continuous phase transition beyond the Landau-Ginzburg-Wilson paradigm. We also discover a line of 3D conformal quantum critical points (with critical magnetic flux loop fluctuations) which, in the N→∞ limit, appears to coexist with a gapless deconfined fracton state.

4.
Psychiatry Clin Neurosci ; 76(2): 41-50, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34704305

RESUMO

AIMS: The Covid-19 pandemic has had a substantial impact on the mental health of the general public and high-risk groups worldwide. Due to its proximity and close links to China, Southeast Asia was one of the first regions to be affected by the outbreak. The aim of this systematic review was to evaluate the prevalence of anxiety, depression and insomnia in the general adult population and healthcare workers (HCWs) in Southeast Asia during the course of the first year of the pandemic. METHODS: Several literature databases were systemically searched for articles published up to February 2021 and two reviewers independently evaluated all relevant studies using pre-determined criteria. The prevalence rates of mental health symptoms were calculated using a random-effect meta-analysis model. RESULTS: In total, 32 samples from 25 studies with 20 352 participants were included. Anxiety was assessed in all 25 studies and depression in 15 studies with pooled prevalence rates of 22% and 16%, respectively. Only two studies assessed insomnia, which was estimated at 19%. The prevalence of anxiety and depression was similar among frontline HCWs (18%), general HCWs (17%), and students (20%) while being noticeably higher in the general population (27%). CONCLUSIONS: This is the first systematic review to investigate the mental health impact of the Covid-19 pandemic in Southeast Asia. A considerable proportion of the general population and HCWs reported mild to moderate symptoms of anxiety and depression; the pooled prevalence rater, however, remain significantly lower than those reported in other areas such as China and Europe.


Assuntos
COVID-19 , Transtornos Mentais , Pandemias , Adulto , Sudeste Asiático/epidemiologia , COVID-19/epidemiologia , COVID-19/psicologia , Humanos , Transtornos Mentais/epidemiologia
5.
J Virol ; 94(20)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727876

RESUMO

The 3C-like protease (3CLpro) of nidovirus plays an important role in viral replication and manipulation of host antiviral innate immunity, which makes it an ideal antiviral target. Here, we characterized that porcine torovirus (PToV; family Tobaniviridae, order Nidovirales) 3CLpro autocatalytically releases itself from the viral precursor protein by self-cleavage. Site-directed mutagenesis suggested that PToV 3CLpro, as a serine protease, employed His53 and Ser160 as the active-site residues. Interestingly, unlike most nidovirus 3CLpro, the P1 residue plays a less essential role in N-terminal self-cleavage of PToV 3CLpro Substituting either P1 or P4 residue of substrate alone has little discernible effect on N-terminal cleavage. Notably, replacement of the two residues together completely blocks N-terminal cleavage, suggesting that N-terminal self-cleavage of PToV 3CLpro is synergistically affected by both P1 and P4 residues. Using a cyclized luciferase-based biosensor, we systematically scanned the polyproteins for cleavage sites and identified (FXXQ↓A/S) as the main consensus sequences. Subsequent homology modeling and biochemical experiments suggested that the protease formed putative pockets S1 and S4 between the substrate. Indeed, mutants of both predicted S1 (D159A, H174A) and S4 (P62G/L185G) pockets completely lost the ability of cleavage activity of PToV 3CLpro In conclusion, the characterization of self-processing activities and substrate specificities of PToV 3CLpro will offer helpful information for the mechanism of nidovirus 3C-like proteinase's substrate specificities and the rational development of the antinidovirus drugs.IMPORTANCE Currently, the active-site residues and substrate specificities of 3C-like protease (3CLpro) differ among nidoviruses, and the detailed catalytic mechanism remains largely unknown. Here, porcine torovirus (PToV) 3CLpro cleaves 12 sites in the polyproteins, including its N- and C-terminal self-processing sites. Unlike coronaviruses and arteriviruses, PToV 3CLpro employed His53 and Ser160 as the active-site residues that recognize a glutamine (Gln) at the P1 position. Surprisingly, mutations of P1-Gln impaired the C-terminal self-processing but did not affect N-terminal self-processing. The "noncanonical" substrate specificity for its N-terminal self-processing was attributed to the phenylalanine (Phe) residue at the P4 position in the N-terminal site. Furthermore, a double glycine (neutral) substitution at the putative P4-Phe-binding residues (P62G/L185G) abolished the cleavage activity of PToV 3CLpro suggested the potential hydrophobic force between the PToV 3CLpro and P4-Phe side chains.


Assuntos
Proteases 3C de Coronavírus/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , Infecções por Torovirus/embriologia , Torovirus/enzimologia , Animais , Proteases 3C de Coronavírus/genética , Células HEK293 , Humanos , Especificidade por Substrato , Suínos , Torovirus/genética , Infecções por Torovirus/genética
6.
J Virol ; 94(15)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32461317

RESUMO

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus. The nonstructural protein nsp5, also called 3C-like protease, is responsible for processing viral polyprotein precursors in coronavirus (CoV) replication. Previous studies have shown that PDCoV nsp5 cleaves the NF-κB essential modulator and the signal transducer and activator of transcription 2 to disrupt interferon (IFN) production and signaling, respectively. Whether PDCoV nsp5 also cleaves IFN-stimulated genes (ISGs), IFN-induced antiviral effector molecules, remains unclear. In this study, we screened 14 classical ISGs and found that PDCoV nsp5 cleaved the porcine mRNA-decapping enzyme 1a (pDCP1A) through its protease activity. Similar cleavage of endogenous pDCP1A was also observed in PDCoV-infected cells. PDCoV nsp5 cleaved pDCP1A at glutamine 343 (Q343), and the cleaved pDCP1A fragments, pDCP1A1-343 and pDCP1A344-580, were unable to inhibit PDCoV infection. Mutant pDCP1A-Q343A, which resists nsp5-mediated cleavage, exhibited a stronger ability to inhibit PDCoV infection than wild-type pDCP1A. Interestingly, the Q343 cleavage site is highly conserved in DCP1A homologs from other mammalian species. Further analyses demonstrated that nsp5 encoded by seven tested CoVs that can infect human or pig also cleaved pDCP1A and human DCP1A, suggesting that DCP1A may be the common target for cleavage by nsp5 of mammalian CoVs.IMPORTANCE Interferon (IFN)-stimulated gene (ISG) induction through IFN signaling is important to create an antiviral state and usually directly inhibits virus infection. The present study first demonstrated that PDCoV nsp5 can cleave mRNA-decapping enzyme 1a (DCP1A) to attenuate its antiviral activity. Furthermore, cleaving DCP1A is a common characteristic of nsp5 proteins from different coronaviruses (CoVs), which represents a common immune evasion mechanism of CoVs. Previous evidence showed that CoV nsp5 cleaves the NF-κB essential modulator and signal transducer and activator of transcription 2. Taken together, CoV nsp5 is a potent IFN antagonist because it can simultaneously target different aspects of the host IFN system, including IFN production and signaling and effector molecules.


Assuntos
Antivirais/farmacologia , Coronavirus/efeitos dos fármacos , Coronavirus/metabolismo , Cisteína Endopeptidases/metabolismo , Endorribonucleases/metabolismo , Transativadores/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Proteases 3C de Coronavírus , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/química , Exorribonucleases/metabolismo , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Interferons/metabolismo , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais , Suínos , Doenças dos Suínos/virologia
7.
Global Health ; 17(1): 32, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33781286

RESUMO

BACKGROUND: The recent outbreak of COVID-19 has impacted adversely upon the mental health of millions of people worldwide. Impacts on the mental health conditions and the associated predictors relating to adults in Pakistan, the fifth most populous country in the world, during the COVID-19 remain understudied. Our aim was to investigate distress, anxiety, and overall mental health and their associated predictors among Pakistani adults in this pandemic. We specifically examine mental health issues based on the distance from the epicenter, (a predictor that has revealed opposing evidence in other countries) based on the theories of typhoon eye effect and ripple effect. The sample consisted of 601 adults who were surveyed online about 2.5 months into the outbreak across Pakistan with varying distances from the epicenter of COVID-19 of Karachi. RESULTS: The results showed that 9.2 and 19.0% of the participants surpassed the cut-off criteria for distress and anxiety disorders, respectively. Overall, the distance from the epicenter positively predicted the mental health of adults in Pakistan, and family size negatively moderated this effect. The distance from the epicenter negatively predicted distress and anxiety disorders for adults in large families, which are quite common in Pakistan. CONCLUSION: The evidence of the study interestingly finds that the prediction of the mental health of people by their distance from the epicenter depends on family size. The evidence of this study can help to provide initial indicators for mental health care providers to screen vulnerable groups in Pakistan, a populous country that continues struggling to cope with the COVID-19 pandemic.


Assuntos
Ansiedade/etiologia , COVID-19/psicologia , Características da Família , Transtornos Mentais/etiologia , Saúde Mental , Pandemias , Estresse Psicológico/etiologia , Adaptação Psicológica , Adulto , Idoso , Transtornos de Ansiedade/etiologia , Tempestades Ciclônicas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Paquistão , Fatores de Risco , SARS-CoV-2 , Análise Espacial , Inquéritos e Questionários , Adulto Jovem
8.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31092569

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus from the Nidovirales order that causes reproductive failure and respiratory disease in pigs and poses a constant threat to the global pig industry. The PRRSV-encoded nonstructural protein 11 (nsp11) is a nidovirus-specific endoribonuclease (NendoU) that is conserved throughout the Arteriviridae and Coronaviridae families. Previously, our research and that of others demonstrated that PRRSV nsp11 inhibits type I interferon (IFN) production through NendoU activity-dependent mechanisms. Here, we found that PRRSV nsp11 also inhibited IFN-stimulated response element (ISRE) promoter activity and subsequent transcription of IFN-stimulated genes (ISGs). Detailed analysis showed that nsp11 targeted interferon regulatory factor 9 (IRF9), but not transducer and activator of transcription 1 (STAT1) or STAT2, key molecules in the type I IFN signaling pathway. Furthermore, the nsp11-IRF9 interaction impaired the formation and nuclear translocation of the transcription factor complex IFN-stimulated gene factor 3 (ISGF3) in both nsp11-overexpressed and PRRSV-infected cells. Importantly, nsp11 mutations (H129A, H144A, and K173A) that ablate NendoU activity or its cell cytotoxicity also interacted with IRF9 and retained the ability to block IFN signaling, indicating that the nsp11-IRF9 interaction is independent of NendoU activity or cell cytotoxicity of nsp11. Taking the results together, our study demonstrated that PRRSV nsp11 antagonizes type I IFN signaling by targeting IRF9 via a NendoU activity-independent mechanism, and this report describes a novel strategy evolved by PRRSV to counteract host innate antiviral responses, revealing a potential new function for PRRSV nsp11 in type I IFN signaling.IMPORTANCE The nidovirus-specific endoribonuclease (NendoU) encoded by PRRSV nonstructural protein 11 (nsp11) is a unique NendoU of nidoviruses that infect vertebrates; thus, it is an attractive target for the development of antinidovirus drugs. Previous studies have revealed that the NendoU of nidoviruses, including porcine reproductive and respiratory syndrome virus (PRRSV) and human coronavirus 229E (HCoV-229E), acts as a type I interferon (IFN) antagonist. Here, for the first time, we demonstrated that overexpression of PRRSV nsp11 also inhibits IFN signaling by targeting the C-terminal interferon regulatory factor (IRF) association domain of IRF9. This interaction impaired the ability of IRF9 to form the transcription factor complex IFN-stimulated gene factor 3 (ISGF3) and to act as a signaling protein of IFN signaling. Collectively, our data identify IRF9 as a natural target of PRRSV NendoU and reveal a novel mechanism evolved by an arterivirus to counteract innate immune signaling.


Assuntos
Endorribonucleases/metabolismo , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Interferon Tipo I/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/antagonistas & inibidores , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Transdução de Sinais , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Humanos , Vírus da Síndrome Respiratória e Reprodutiva Suína/crescimento & desenvolvimento , Suínos
9.
J Virol ; 93(12)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30944180

RESUMO

Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) represent two members of the family Arteriviridae and pose major threats for the horse- and swine-breeding industries worldwide. A previous study suggested that PRRSV nsp4, a 3C-like protease, antagonizes interferon beta (IFN-ß) production by cleaving the NF-κB essential modulator (NEMO) at a single site, glutamate 349 (E349). Here, we demonstrated that EAV nsp4 also inhibited virus-induced IFN-ß production by targeting NEMO for proteolytic cleavage and that the scission occurred at four sites: E166, E171, glutamine 205 (Q205), and E349. Additionally, we found that, besides the previously reported cleavage site E349 in NEMO, scission by PRRSV nsp4 took place at two additional sites, E166 and E171. These results imply that while cleaving NEMO is a common strategy utilized by EAV and PRRSV nsp4 to antagonize IFN induction, EAV nsp4 adopts a more complex substrate recognition mechanism to target NEMO. By analyzing the abilities of the eight different NEMO fragments resulting from EAV or PRRSV nsp4 scission to induce IFN-ß production, we serendipitously found that a NEMO fragment (residues 1 to 349) could activate IFN-ß transcription more robustly than full-length NEMO, whereas all other NEMO cleavage products were abrogated for the IFN-ß-inducing capacity. Thus, NEMO cleavage at E349 alone may not be sufficient to completely inactivate the IFN response via this signaling adaptor. Altogether, our findings suggest that EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is critical for disarming the innate immune response for viral survival.IMPORTANCE The arterivirus nsp4-encoded 3C-like protease (3CLpro) plays an important role in virus replication and immune evasion, making it an attractive target for antiviral therapeutics. Previous work suggested that PRRSV nsp4 suppresses type I IFN production by cleaving NEMO at a single site. In contrast, the present study demonstrates that both EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is essential for disruption of type I IFN production. Moreover, we reveal that EAV nsp4 also cleaves NEMO at glutamine 205 (Q205), which is not targeted by PRRSV nsp4. Notably, targeting a glutamine in NEMO for cleavage has been observed only with picornavirus 3C proteases (3Cpro) and coronavirus 3CLpro In aggregate, our work expands knowledge of the innate immune evasion mechanisms associated with NEMO cleavage by arterivirus nsp4 and describes a novel substrate recognition characteristic of EAV nsp4.


Assuntos
Equartevirus/metabolismo , Interferon beta/biossíntese , Proteínas não Estruturais Virais/metabolismo , Animais , Arteriviridae/metabolismo , Arterivirus/metabolismo , Linhagem Celular , Equartevirus/fisiologia , Células HEK293 , Cavalos , Humanos , Quinase I-kappa B/metabolismo , Quinase I-kappa B/fisiologia , Evasão da Resposta Imune , Imunidade Inata , Interferon beta/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Proteólise , Transdução de Sinais , Suínos , Replicação Viral
10.
Phys Rev Lett ; 125(1): 017201, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32678656

RESUMO

Quantum spin liquids can be faithfully represented and efficiently characterized within the framework of projected entangled pair states (PEPS). Guided by extensive exact diagonalization and density matrix renormalization group calculations, we construct an optimized symmetric PEPS for a SU(3)_{1} chiral spin liquid on the square lattice. Characteristic features are revealed by the entanglement spectrum (ES) on an infinitely long cylinder. In all three Z_{3} sectors, the level counting of the linear dispersing modes is in full agreement with SU(3)_{1} Wess-Zumino-Witten conformal field theory prediction. Special features in the ES are shown to be in correspondence with bulk anyonic correlations, indicating a fine structure in the holographic bulk-edge correspondence. Possible universal properties of topological SU(N)_{k} chiral PEPS are discussed.

11.
FASEB J ; 33(12): 14575-14587, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31690127

RESUMO

Coronaviruses (CoVs) infect humans and multiple other animal species, causing highly prevalent and severe diseases. 3C-like proteases (3CLpros) from CoVs (also called main proteases) are essential for viral replication and are also involved in polyprotein cleavage and immune regulation, making them attractive and effective targets for the development of antiviral drugs. Herein, the 3CLpro from the porcine epidemic diarrhea virus, an enteropathogenic CoV, was used as a model to identify novel crucial residues for enzyme activity. First, we established a rapid, sensitive, and efficient luciferase-based biosensor to monitor the activity of PDEV 3CLproin vivo. Using this luciferase biosensor, along with confirming the well-known catalytic residues (His41 and Cys144), we identified 4 novel proteolytically inactivated mutants of PDEV 3CLpro, which was also confirmed in mammalian cells by biochemical experiments. Our molecular dynamics (MD) simulations showed that the hydrogen bonding interactions occurring within and outside of the protease's active site and the dynamic fluctuations of the substrate, especially the van der Waals contacts, were drastically altered, a situation related to the loss of 3CLpro activity. These data suggest that changing the intermolecular dynamics in protein-substrate complexes eliminates the mechanism underlying the protease activity. The discovery of novel crucial residues for enzyme activity in the binding pocket could potentially provide more druggable sites for the design of protease inhibitors. In addition, our in-depth study of the dynamic substrate's envelope model using MD simulations is an approach that could augment the discovery of new inhibitors against 3CLpro in CoVs and other viral 3C proteases.-Zhou, J., Fang, L., Yang, Z., Xu, S., Lv, M., Sun, Z., Chen, J., Wang, D., Gao, J., Xiao, S. Identification of novel proteolytically inactive mutations in coronavirus 3C-like protease using a combined approach.


Assuntos
Coronavirus/enzimologia , Cisteína Endopeptidases/metabolismo , Mutação , Proteínas Virais/metabolismo , Proteases Virais 3C , Sequência de Aminoácidos , Linhagem Celular , Coronavirus/genética , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Ativação Enzimática , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Terciária de Proteína , Proteínas Virais/química , Proteínas Virais/genética
12.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28250121

RESUMO

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus. The first outbreak of PDCoV was announced from the United States in 2014, followed by reports in Asia. The nonstructural protein nsp5 is a 3C-like protease of coronavirus, and our previous study showed that PDCoV nsp5 inhibits type I interferon (IFN) production. In this study, we found that PDCoV nsp5 significantly inhibited IFN-stimulated response element (ISRE) promoter activity and transcription of IFN-stimulated genes (ISGs), suggesting that PDCoV nsp5 also suppresses IFN signaling. Detailed analysis showed that nsp5 cleaved signal transducer and activator of transcription 2 (STAT2) but not Janus kinase 1 (JAK1), tyrosine kinase 2 (TYK2), STAT1, and interferon regulatory factor 9 (IRF9), key molecules of the JAK-STAT pathway. STAT2 cleavage was dependent on the protease activity of nsp5. Interestingly, nsp5 cleaved STAT2 at two sites, glutamine 685 (Q685) and Q758, and similar cleavage was observed in PDCoV-infected cells. As expected, cleaved STAT2 impaired the ability to induce ISGs, demonstrating that STAT2 cleavage is an important mechanism utilized by PDCoV nsp5 to antagonize IFN signaling. We also discussed the substrate selection and binding mode of PDCoV nsp5 by homologous modeling of PDCoV nsp5 with the two cleaved peptide substrates. The results of our study demonstrate that PDCoV nsp5 antagonizes type I IFN signaling by cleaving STAT2 and provides structural insights for comprehending the cleavage mechanism of PDCoV nsp5, revealing a potential new function for PDCoV nsp5 in type I IFN signaling.IMPORTANCE The 3C-like protease encoded by nsp5 is a major protease of coronaviruses; thus, it is an attractive target for development of anticoronavirus drugs. Previous studies have revealed that the 3C-like protease of coronaviruses, including PDCoV and porcine epidemic diarrhea virus (PEDV), antagonizes type I IFN production by targeting the NF-κB essential modulator (NEMO). Here, for the first time, we demonstrate that overexpression of PDCoV nsp5 also antagonizes IFN signaling by cleaving STAT2, an essential component of transcription factor complex ISGF3, and that PDCoV infection reduces the levels of STAT2, which may affect the innate immune response.


Assuntos
Coronavirus/química , Interferon Tipo I/metabolismo , Vírus da Diarreia Epidêmica Suína/química , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais , Proteínas Virais/metabolismo , Animais , Coronavirus/genética , Coronavirus/fisiologia , Infecções por Coronavirus , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/fisiologia , Alinhamento de Sequência , Suínos , Proteínas Virais/genética , Proteínas Virais/isolamento & purificação
13.
Biochem Biophys Res Commun ; 488(4): 621-627, 2017 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-28501618

RESUMO

Hepatitis A is an acute infection caused by Hepatitis A virus (HAV), which is widely distributed throughout the world. The HAV 3C cysteine protease (3Cpro), an important nonstructural protein, is responsible for most cleavage within the viral polyprotein and is critical for the processes of viral replication. Our group has previously demonstrated that HAV 3Cpro cleaves human NF-κB essential modulator (NEMO), a kinase required in interferon signaling. Based on this finding, we generated four luciferase-based biosensors containing the NEMO sequence (PVLKAQ↓ADIYKA) that is cleaved by HAV 3Cpro and/or the Nostoc punctiforme DnaE intein, to monitor the activity of HAV 3Cpro in human embryonic kidney cells (HEK-293T). Western blotting showed that HAV 3Cpro recognized and cleaved the NEMO cleavage sequence incorporated in the four biosensors, whereas only one cyclized luciferase-based biosensor (233-DnaE-HAV, 233DH) showed a measurable and reliable increase in firefly luciferase activity, with very low background, in the presence of HAV 3Cpro. With this biosensor (233DH), we monitored HAV 3Cpro activity in HEK-293T cells, and tested it against a catalytically deficient mutant HAV 3Cpro and other virus-encoded proteases. The results showed that the activity of this luciferase biosensor is specifically dependent on HAV 3Cpro. Collectively, our data demonstrate that the luciferase biosensor developed here might provide a rapid, sensitive, and efficient evaluation of HAV 3Cpro activity, and should extend our better understanding of the biological relevance of HAV 3Cpro.


Assuntos
Técnicas Biossensoriais , Cisteína Endopeptidases/análise , Cisteína Endopeptidases/metabolismo , Vírus da Hepatite A/enzimologia , Luciferases/metabolismo , Proteínas Virais/análise , Proteínas Virais/metabolismo , Proteases Virais 3C , Linhagem Celular Tumoral , Células HEK293 , Humanos
14.
J Fluoresc ; 24(5): 1481-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25096523

RESUMO

The photoluminescence (PL) properties of single gold nanorod (AuNR) under one-photon excitation (OPE) have been reported recently. In this work, the PL of AuNRs in aqueous solutions were studied with OPE of 514 or 633 nm to characterize the emissions of transverse and longitudinal surface Plasmon resonance (TSPR and LSPR) bands, because the AuNRs aqueous solution was frequently used in bio-medical applications. We found that under 514 nm OPE the TSPR emissions of four groups of AuNRs with different aspect ratios in aqueous solutions were all strong dominating the PL emission with the quantum yield (QY) of 10(-4), which is at least three orders of magnitude higher than that of single AuNR. We further found that the aggregate was the basic form of AuNRs in aqueous solution and living cells, measured by the elastic light scattering and transmission electron microscopy measurements. The Plasmon coupling particularly the TSPR coupling between the neighbored AuNRs in aggregates enhanced the PL and increased the QY, because the conjugation of the rod side to side was a main aggregate mode. Under 633 nm OPE, only LSPR emissions of AuNRs aqueous solutions occurred with the QY level of 10(-5) which is very similar to that of singe AuNR, because of the negligible LSPR coupling.


Assuntos
Ouro/química , Luminescência , Nanotubos/química , Linhagem Celular Tumoral , Humanos , Soluções , Água/química
15.
J Fluoresc ; 24(3): 767-74, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24488596

RESUMO

Transition metal manganese ion (Mn(2+)) doped zinc selenide quantum dots (Mn:ZnSe D-Dots) have been considered as a new material for fluorescent probes in biological labeling. However, this application is limited by the low membrane permeability of D-Dots. In this work, Mn:ZnSe D-Dots were capped with the polycation Sofast to label living cells. For the first time, the efficiency of cellular uptake in living cells is significantly enhanced. Various molar ratios of Sofast to D-Dots were explored and compared to obtain the optimal reaction conditions between Sofast and D-Dots for preparing Sofast/D-Dots nano-compound. A comparison on the fluorescence labeling ability of living cells were made between Sofast/D-Dots and pure D-Dots. Results from laser scanning confocal microscope show that Sofast/D-Dots complexes enter the cells more efficiently than pure D-Dots, even with a lower concentration and shorter incubation time. The cytotoxicities of D-Dots and Sofast/D-Dots were also studied. It was found that Sofast/D-Dots have a much lower cytotoxicity than cadmium-containing quantum dots (i.e. CdTe and CdTe/ZnS). Our results suggest that the non-heavy-metal-containing Sofast/D-Dots complexes have a great potential in the application of biological labeling, especially of long-time bioimaging in living cells.


Assuntos
Carcinoma Hepatocelular/patologia , Corantes Fluorescentes/química , Manganês/química , Poliaminas/química , Pontos Quânticos , Compostos de Selênio/química , Compostos de Zinco/química , Cádmio/química , Sobrevivência Celular , Células HeLa , Humanos , Neoplasias Hepáticas/patologia , Microscopia Confocal , Imagem Óptica , Polieletrólitos , Células Tumorais Cultivadas , Água/química
16.
Virol Sin ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734183

RESUMO

The increasing emergence and re-emergence of RNA virus outbreaks underlines the urgent need to develop effective antivirals. RNA interference (RNAi) is a sequence-specific gene silencing mechanism that is triggered by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs), which exhibits significant promise for antiviral therapy. AGO2-dependent shRNA (agshRNA) generates a single-stranded guide RNA and presents significant advantages over traditional siRNA and shRNA. In this study, we applied a logistic regression algorithm to a previously published chemically siRNA efficacy dataset and built a machine learning-based model with high predictive power. Using this model, we designed siRNA sequences targeting diverse RNA viruses, including human enterovirus A71 (EV71), Zika virus (ZIKV), dengue virus 2 (DENV2), mouse hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and transformed them into agshRNAs. We validated the performance of our agshRNA design by evaluating antiviral efficacies of agshRNAs in cells infected with different viruses. Using the agshRNA targeting EV71 as an example, we showed that the anti-EV71 effect of agshRNA was more potent compared with the corresponding siRNA and shRNA. Moreover, the antiviral effect of agshRNA is dependent on AGO2-processed guide RNA, which can load into the RNA-induced silencing complex (RISC). We also confirmed the antiviral effect of agshRNA in vivo. Together, this work develops a novel antiviral strategy that combines machine learning-based algorithm with agshRNA design to custom design antiviral agshRNAs with high efficiency.

17.
Phys Chem Chem Phys ; 15(38): 15727-33, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-23575880

RESUMO

Gold nanorods (AuNRs) were conjugated with chlorin e6 (Ce6), a commonly used photosensitizer, to form AuNRs-Ce6 by electrostatic binding. Due to the strong surface plasmon resonance coupling, the fluorescence of conjugated Ce6 was enhanced 3-fold and the production of singlet oxygen was increased 1.4-fold. AuNRs-Ce6 were taken up by the HeLa and KB cell lines more easily than free Ce6, enhancing the intracellular delivery of Ce6. The increased cellular amount of Ce6 leads to a 3-fold more efficient photodynamic killing of these two cell lines. This demonstrates the potential of this approach to improve photodynamic detection and therapy of cancers.


Assuntos
Ouro/química , Nanotubos/química , Fármacos Fotossensibilizantes/síntese química , Porfirinas/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Clorofilídeos , Células HeLa , Humanos , Microscopia Confocal , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/toxicidade , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Eletricidade Estática
18.
Integr Cancer Ther ; 22: 15347354231162080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37014010

RESUMO

BACKGROUND: Sleep disturbances are common and bothersome among cancer and noncancer populations. Suanzaoren (Ziziphi Spinosae Semen) is commonly used to improve sleep, yet its efficacy and safety are unclear. METHODS: We systematically searched PubMed, Cochrane Library, and EMBASE from inception through October 5, 2021, to identify randomized trials of Suanzaoren. We included randomized trials comparing Suanzaoren to placebo, medications, cognitive behavioral therapy (CBT), or usual care for improving sleep outcomes in cancer and noncancer patients with insomnia or sleep disturbance. We performed a risk of bias analysis following Cochrane guidelines. Depending on heterogeneity, we pooled studies with similar comparators using fixed- and random-effects models. RESULTS: We included participants with insomnia disorder (N = 785) or sleep disturbance (N = 120) from 9 trials. Compared with placebo, Suanzaoren led to significant subjective sleep quality improvements in participants with insomnia and patients with sleep disturbance combined (standard mean difference -0.58, 95% CI -1.04, -0.11; P < .01); Compared with benzodiazepines or CBT, Suanzaoren was associated with a significant decrease in insomnia severity (mean difference -2.68 points, 95% CI -5.50, -0.22; P = .03) at 4 weeks in the general population and cancer patients. The long-term effects of Suanzaoren were mixed among trials. Suanzaoren did not increase the incidence of major adverse events. The placebo-controlled studies had a low risk of bias. CONCLUSION: Suanzaoren is associated with short-term patient-reported sleep quality improvements among individuals with insomnia or sleep disturbance. Due to the small sample size and variable study quality, the clinical benefits and harms of Suanzaoren, particularly in the long term, should be further assessed in a sufficiently powered randomized trial. REGISTRATION: PROSPERO CRD42021281943.


Assuntos
Medicamentos de Ervas Chinesas , Plantas Medicinais , Distúrbios do Início e da Manutenção do Sono , Transtornos do Sono-Vigília , Humanos , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Melhoria de Qualidade , Sementes , Sono , Medicamentos de Ervas Chinesas/uso terapêutico , Transtornos do Sono-Vigília/tratamento farmacológico , Transtornos do Sono-Vigília/etiologia , Ensaios Clínicos Controlados Aleatórios como Assunto
19.
Anticancer Drugs ; 23(10): 1047-53, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22797175

RESUMO

Sulfonated aluminum phthalocyanine (AlPcS), a widely used photosensitizer for photodynamic therapy of cancer, was conjugated to doxorubicin (Dox), a chemotherapy drug, through electrostatic binding. The fluorescence resonance energy transfer from Dox to AlPcS showed the formation of AlPcS-Dox conjugates, as the fluorescence intensity of conjugated Dox was decreased and that of the AlPcS moiety was enhanced. This AlPcS-Dox conjugation was further confirmed by electrophoresis. The AlPcS-Dox conjugates enhanced the cellular uptake of AlPcS three times more than unconjugated AlPcS in both human hepatocellular carcinoma cell line 7701 and rat basophilic leukemia cell line. Moreover, the photodynamic killing effect of the conjugates was markedly increased as compared with that of AlPcS alone or the cytotoxicity of Dox alone, showing an enhanced effect of the AlPcS-Dox conjugates. These results indicate that the conjugation of a photosensitizer with a chemotherapy drug may improve photodynamic cancer therapy.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Indóis/farmacologia , Compostos Organometálicos/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/química , Humanos , Indóis/química , Leucemia Basofílica Aguda/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Compostos Organometálicos/química , Ratos
20.
J Glob Health ; 12: 05011, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35604881

RESUMO

Background: This systematic review aims to 1) summarize the prevalence of anxiety, depression, distress, insomnia, and PTSD in the adult population during the first year of the COVID pandemic in developing countries and 2) uncover and highlight the uneven distribution of research on mental health in all developing countries across regions. Methods: Several literature databases were systemically searched for meta-analyses published by September 22, 2021, on the prevalence rates of mental health symptoms in developing countries worldwide. We meta-analysed the raw data of the individual empirical results from the previous meta-analysis papers in developing countries in different regions. Results: The prevalence rates of mental health symptoms were summarized based on 341 empirical studies with a total of 1 704 072 participants from 40 out of 167 developing countries in Africa, Asia (East, Southeast, South, and West), Europe, and Latin America. Comparatively, Africa (39%) and West Asia (35%) had the worse overall mental health symptoms, followed by Latin America (32%). The prevalence rates of overall mental health symptoms of medical students (38%), general adult students (30%), and frontline health care workers (HCWs) (27%) were higher than those of general HCWs (25%) and general populations (23%). Among five mental health symptoms, distress (29%) and depression (27%) were the most prevalent. Interestingly, people in the least developing countries suffered less than those in emergent and other developing countries. The various instruments employed lead to result heterogeneity, demonstrating the importance of using the well-established instruments with the standard cut-off points (eg, GAD-7, GAD-2, and DASS-21 for anxiety, PHQ-9 and DASS-21 for depression, and ISI for insomnia). Conclusions: The research effort on mental health in developing countries during COVID-19 has been highly uneven in the scope of countries and mental health outcomes. This meta-analysis, the largest on this topic to date, shows that the mental health symptoms are highly prevalent yet differ across regions. The accumulated systematic evidence from this study can help enable the prioritization of mental health assistance efforts to allocate attention and resources across countries and regions.


Assuntos
COVID-19 , Distúrbios do Início e da Manutenção do Sono , Adulto , COVID-19/epidemiologia , Depressão/epidemiologia , Países em Desenvolvimento , Humanos , Saúde Mental , Pandemias , Distúrbios do Início e da Manutenção do Sono/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa