Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 605(7908): 166-171, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35477757

RESUMO

DNA wraps around the histone octamer to form nucleosomes1, the repeating unit of chromatin, which create barriers for accessing genetic information. Snf2-like chromatin remodellers couple the energy of ATP binding and hydrolysis to reposition and recompose the nucleosome, and have vital roles in various chromatin-based transactions2,3. Here we report the cryo-electron microscopy structure of the 12-subunit human chromatin-remodelling polybromo-associated BRG1-associated factor (PBAF) complex bound to the nucleosome. The motor subunit SMARCA4 engages the nucleosome in the active conformation, which reveals clustering of multiple disease-associated mutations at the interfaces that are essential for chromatin-remodelling activity. SMARCA4 recognizes the H2A-H2B acidic pocket of the nucleosome through three arginine anchors of the Snf2 ATP coupling (SnAc) domain. PBAF shows notable functional modularity, and most of the auxiliary subunits are interwoven into three lobe-like submodules for nucleosome recognition. The PBAF-specific auxiliary subunit ARID2 acts as the structural core for assembly of the DNA-binding lobe, whereas PBRM1, PHF10 and BRD7 are collectively incorporated into the lobe for histone tail binding. Together, our findings provide mechanistic insights into nucleosome recognition by PBAF and a structural basis for understanding SMARCA4-related human diseases.


Assuntos
Histonas , Nucleossomos , Trifosfato de Adenosina/metabolismo , Cromatina/genética , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Microscopia Crioeletrônica , DNA/metabolismo , DNA Helicases/metabolismo , Histonas/metabolismo , Proteínas de Homeodomínio , Humanos , Modelos Moleculares , Proteínas de Neoplasias , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo
2.
Nature ; 610(7932): 569-574, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198799

RESUMO

Deoxyribonucleic acid in eukaryotes wraps around the histone octamer to form nucleosomes1, the fundamental unit of chromatin. The N termini of histone H4 interact with nearby nucleosomes and play an important role in the formation of high-order chromatin structure and heterochromatin silencing2-4. NuA4 in yeast and its homologue Tip60 complex in mammalian cells are the key enzymes that catalyse H4 acetylation, which in turn regulates chromatin packaging and function in transcription activation and DNA repair5-10. Here we report the cryo-electron microscopy structure of NuA4 from Saccharomyces cerevisiae bound to the nucleosome. NuA4 comprises two major modules: the catalytic histone acetyltransferase (HAT) module and the transcription activator-binding (TRA) module. The nucleosome is mainly bound by the HAT module and is positioned close to a polybasic surface of the TRA module, which is important for the optimal activity of NuA4. The nucleosomal linker DNA carrying the upstream activation sequence is oriented towards the conserved, transcription activator-binding surface of the Tra1 subunit, which suggests a potential mechanism of NuA4 to act as a transcription co-activator. The HAT module recognizes the disk face of the nucleosome through the H2A-H2B acidic patch and nucleosomal DNA, projecting the catalytic pocket of Esa1 to the N-terminal tail of H4 and supporting its function in selective acetylation of H4. Together, our findings illustrate how NuA4 is assembled and provide mechanistic insights into nucleosome recognition and transcription co-activation by a HAT.


Assuntos
Microscopia Crioeletrônica , Histona Acetiltransferases , Nucleossomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Acetilação , DNA/química , DNA/metabolismo , DNA/ultraestrutura , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/ultraestrutura , Histonas/química , Histonas/metabolismo , Histonas/ultraestrutura , Nucleossomos/química , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Transcrição/metabolismo
3.
J Virol ; 95(22): e0092521, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34495698

RESUMO

Recombinant viral vectors represent an important platform for vaccine delivery. Our recent studies have demonstrated distinct innate immune profiles in responding to viral vectors of different families (e.g., adenovirus versus poxvirus): while human Ad5 vector is minimally innate immune stimulatory, the poxviral vector ALVAC induces strong innate response and stimulates type I interferon (IFN) and inflammasome activation. However, the impact of the innate immune signaling on vaccine-induced adaptive immunity in viral vector vaccination is less clear. Here, we show that Modified Vaccinia Ankara (MVA), another poxviral vector, stimulated a type I IFN response in innate immune cells through cGAS-STING. Using MVA-HIV vaccine as a model, we found that type I IFN signaling promoted the generation of humoral immunity in MVA-HIV vaccination in vivo. Following vaccination, type I IFN receptor-knockout (IFNAR1-/-) mice produced significantly lower levels of total and HIV gp120-specific antibodies compared to wild-type (WT) mice. Consistent with the antibody response, a type I IFN signaling deficiency also led to reduced levels of plasma cells and memory-like B cells compared to WT mice. Furthermore, analysis of vaccine-induced CD4 T cells showed that type I IFN signaling also promoted the generation of a vaccine-specific CD4 T-cell response and a T follicular helper (Tfh) response in mice. Together, our data indicate a role for type I IFN signaling in promoting humoral immunity in poxviral vector vaccination. The study suggests that modulating type I IFN and its associated innate immune pathways will likely affect vaccine efficacy. IMPORTANCE Viral vectors, including MVA, are an important antigen delivery platform and have been commonly used in vaccine development. Understanding the innate host-viral vector interactions and their impact on vaccine-induced immunity is critical but understudied. Using MVA-HIV vaccination of WT and IFNAR1-/- mice as a model, we report that type I IFN signaling promotes humoral immunity in MVA vaccination, including vaccine-induced antibody, B-cell, and Tfh responses. Our findings provide insights that not only add to our basic understanding of host-viral vector interactions but also will aid in improving vaccine design by potentially modulating type I IFN and its associated innate immune pathways in viral vector vaccination.


Assuntos
Vacinas contra a AIDS/imunologia , Vetores Genéticos/imunologia , Interferon Tipo I/imunologia , Desenvolvimento de Vacinas/métodos , Vaccinia virus/imunologia , Animais , Humanos , Imunidade Humoral , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células THP-1 , Eficácia de Vacinas
4.
J Stroke Cerebrovasc Dis ; 28(5): 1400-1408, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30871867

RESUMO

BACKGROUND: Limited data are available on the impact of fasting plasma glucose (FPG) on outcomes in nondiabetic acute ischemic stroke patients. METHODS: The prospective, multi-center, and observational study was performed at 8 hospitals in the Liaoning Province between 2015-2016, sought to elucidate the relationship between FPG and the 6-month functional outcomes in nondiabetic acute ischemic stroke patients. The primary effect measure was the adjusted odds ratio for a shift in the direction of unfavorable outcome on the modified Rankin Scale (mRS) score at 6 months, estimated with an ordinal logistic regression, and adjusted for common prognostic factors. Finally, we employed a restricted cubic spline function of linear model to characterize concentration-response (C-R) relationships between FPG and outcomes. RESULTS: A total of 1260 consecutive patients were enrolled, 48.9% of patients had FPG levels >6.1mmol/L. A total of 282 (22.4%) patients achieved an unfavorable neurologic outcome. Patients achieving an unfavorable neurologic outcome had significantly higher levels of FPG than those achieving a favorable neurologic outcome (6.47mmol/L versus 7.02 mmol/L). FPG was significantly related to an unfavorable neurologic outcome in nondiabetic acute ischemic stroke patients. The C-R curve showed a nonlinear relation between FPG and 6-month mRS with the nadir at 5.9mmol/L. Moreover, the likelihood of unfavorable outcome increased by 8.5% for each 1mmol/L increase in FPG. CONCLUSIONS: Early identification and prompt hyperglycemia management should be considered to improve the functional outcomes during the early poststroke stage.


Assuntos
Glicemia/metabolismo , Isquemia Encefálica/sangue , Isquemia Encefálica/terapia , Jejum/sangue , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/terapia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/fisiopatologia , China , Avaliação da Deficiência , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Recuperação de Função Fisiológica , Fatores de Risco , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo , Resultado do Tratamento
5.
J Am Soc Nephrol ; 28(8): 2409-2419, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28280139

RESUMO

The kidney maintains systemic acid-base balance by reclaiming from the renal tubule lumen virtually all HCO3- filtered in glomeruli and by secreting additional H+ to titrate luminal buffers. For proximal tubules, which are responsible for about 80% of this activity, it is believed that HCO3- reclamation depends solely on H+ secretion, mediated by the apical Na+/H+ exchanger NHE3 and the vacuolar proton pump. However, NHE3 and the proton pump cannot account for all HCO3- reclamation. Here, we investigated the potential contribution of two variants of the electroneutral Na+/HCO3- cotransporter NBCn2, the amino termini of which start with the amino acids MCDL (MCDL-NBCn2) and MEIK (MEIK-NBCn2). Western blot analysis and immunocytochemistry revealed that MEIK-NBCn2 predominantly localizes at the basolateral membrane of medullary thick ascending limbs in the rat kidney, whereas MCDL-NBCn2 localizes at the apical membrane of proximal tubules. Notably, NH4Cl-induced systemic metabolic acidosis or hypokalemic alkalosis downregulated the abundance of MCDL-NBCn2 and reciprocally upregulated NHE3 Conversely, NaHCO3-induced metabolic alkalosis upregulated MCDL-NBCn2 and reciprocally downregulated NHE3 We propose that the apical membrane of the proximal tubules has two distinct strategies for HCO3- reclamation: the conventional indirect pathway, in which NHE3 and the proton pump secrete H+ to titrate luminal HCO3-, and the novel direct pathway, in which NBCn2 removes HCO3- from the lumen. The reciprocal regulation of NBCn2 and NHE3 under different physiologic conditions is consistent with our mathematical simulations, which suggest that HCO3- uptake and H+ secretion have reciprocal efficiencies for HCO3- reclamation versus titration of luminal buffers.


Assuntos
Bicarbonatos/metabolismo , Membrana Celular/metabolismo , Túbulos Renais Proximais/metabolismo , Simportadores de Sódio-Bicarbonato/fisiologia , Animais , Transporte de Íons , Túbulos Renais Proximais/ultraestrutura , Ratos , Ratos Sprague-Dawley
6.
Nat Struct Mol Biol ; 31(2): 266-274, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177688

RESUMO

Nucleosomes are basic repeating units of chromatin and form regularly spaced arrays in cells. Chromatin remodelers alter the positions of nucleosomes and are vital in regulating chromatin organization and gene expression. Here we report the cryo-EM structure of chromatin remodeler ISW1a complex from Saccharomyces cerevisiae bound to the dinucleosome. Each subunit of the complex recognizes a different nucleosome. The motor subunit binds to the mobile nucleosome and recognizes the acidic patch through two arginine residues, while the DNA-binding module interacts with the entry DNA at the nucleosome edge. This nucleosome-binding mode provides the structural basis for linker DNA sensing of the motor. Notably, the Ioc3 subunit recognizes the disk face of the adjacent nucleosome through interacting with the H4 tail, the acidic patch and the nucleosomal DNA, which plays a role in the spacing activity in vitro and in nucleosome organization and cell fitness in vivo. Together, these findings support the nucleosome spacing activity of ISW1a and add a new mode of nucleosome remodeling in the context of a chromatin environment.


Assuntos
Nucleossomos , Proteínas de Saccharomyces cerevisiae , Nucleossomos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Montagem e Desmontagem da Cromatina , Adenosina Trifosfatases/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , DNA/metabolismo
7.
Front Vet Sci ; 11: 1389264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756518

RESUMO

The genus Hepacivirus comprises a diverse range of genetically distinct viruses that infect both mammalian and non-mammalian hosts, with some posing significant risks to human and animal health. Members of the genus Hepacivirus are typically classified into fourteen species (Hepacivirus A-N), with ongoing discoveries of novel hepaciviruses like Hepacivirus P and Hepacivirus Q. In this study, a novel Hepacivirus was identified in duck liver samples collected from live poultry markets in Hunan province, China, using unbiased high-throughput sequencing and meta-transcriptomic analysis. Through sequence comparison and phylogenetic analysis, it was determined that this newly discovered Hepacivirus belongs to a new subspecies of Hepacivirus Q. Moreover, molecular screening revealed the widespread circulation of this novel virus among duck populations in various regions of Hunan province, with an overall prevalence of 13.3%. These findings significantly enhence our understanding of the genetic diversity and evolution of hepaciviruses, emphasizing the presence of genetically diverse hepaciviruses duck populations in China. Given the broad geographical distribution and relatively high positive rate, further investigations are essential to explore any potential associations between Hepacivirus Q and duck-related diseases.

8.
Am J Transl Res ; 15(12): 6970-6987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38186999

RESUMO

Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is a complex condition without a definite cause. During IBD, immune cells such as macrophages release proinflammatory cytokines and chemokines, contributing to intestinal barrier integrity dysfunction. IBD is largely influenced by macrophages, which are classified into subtypes M1 and M2. M1 macrophages have been found to contribute to the development of IBD, whereas M2 macrophages alleviate IBD. Hence, agents that cause increased polarization of the M2 phenotype could help repair IBD. Exosomes, as ubiquitous conveyors of intercellular messages, are involved in immune responses and immune-mediated disease processes. Exosomes and their microRNA (miRNA) from healthy cells have been found to polarize macrophages to M2 to repair IBD due to their anti-inflammatory properties; however, those from inflammatory-driven cells and disease cells promote M1 macrophages to perpetuate IBD. Here, we review the biogenesis, biochemical composition, and sources of exosomes, as well as the roles of exosomes as extracellular vesicles in regulation of macrophages to repair IBD.

9.
Nat Commun ; 12(1): 4057, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210977

RESUMO

Chromatin remodeler ALC1 (amplification in liver cancer 1) is crucial for repairing damaged DNA. It is autoinhibited and activated by nucleosomal epitopes. However, the mechanisms by which ALC1 is regulated remain unclear. Here we report the crystal structure of human ALC1 and the cryoEM structure bound to the nucleosome. The structure shows the macro domain of ALC1 binds to lobe 2 of the ATPase motor, sequestering two elements for nucleosome recognition, explaining the autoinhibition mechanism of the enzyme. The H4 tail competes with the macro domain for lobe 2-binding, explaining the requirement for this nucleosomal epitope for ALC1 activation. A dual-arginine-anchor motif of ALC1 recognizes the acidic pocket of the nucleosome, which is critical for chromatin remodeling in vitro. Together, our findings illustrate the structures of ALC1 and shed light on its regulation mechanisms, paving the way for the discovery of drugs targeting ALC1 for the treatment of cancer.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Cristalografia por Raios X/métodos , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/química , Neoplasias Hepáticas/patologia , Nucleossomos/metabolismo , Proteínas Recombinantes/química , Células Cultivadas , DNA Helicases/química , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Domínios Proteicos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
10.
Science ; 366(6467): 838-843, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31672915

RESUMO

The RSC complex remodels chromatin structure and regulates gene transcription. We used cryo-electron microscopy to determine the structure of yeast RSC bound to the nucleosome. RSC is delineated into the adenosine triphosphatase motor, the actin-related protein module, and the substrate recruitment module (SRM). RSC binds the nucleosome mainly through the motor, with the auxiliary subunit Sfh1 engaging the H2A-H2B acidic patch to enable nucleosome ejection. SRM is organized into three substrate-binding lobes poised to bind their respective nucleosomal epitopes. The relative orientations of the SRM and the motor on the nucleosome explain the directionality of DNA translocation and promoter nucleosome repositioning by RSC. Our findings shed light on RSC assembly and functionality, and they provide a framework to understand the mammalian homologs BAF/PBAF and the Sfh1 ortholog INI1/BAF47, which are frequently mutated in cancers.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Proteínas de Ligação a DNA/química , Nucleossomos/química , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição/química , Actinas/química , Cromatina/química , Microscopia Crioeletrônica , Domínios Proteicos , Proteína SMARCB1/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa