Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Regul Toxicol Pharmacol ; 142: 105427, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37290570

RESUMO

China is the world's largest consumer of cigarettes. However, the potential cancer risk posed by polycyclic aromatic hydrocarbons (PAHs) in mainstream cigarette smoke, especially species other than benzo[a]pyrene (BaP) remains unclear. In this study, we collected yield data on multiple PAH species from a variety of cigarettes in the China market and calculated their smoking-related incremental lifetime cancer risk (ILCR) values. The computed ILCRs of the total PAHs (ILCRΣPAHs) for ≥95% of the brands were one order of magnitude higher than the acceptable level. ILCRBaP accounted for only 5.0%-37.7% of ILCRΣPAHs among brands, indicating that using single analyte BaP to represent ΣPAHs would significantly underestimate ILCRΣPAHs. No clear trend of changes in ILCRΣPAHs was found for Chinese cigarettes over multiple years, suggesting that smoking cessation is still the best option to minimize the cancer risk of PAHs. The comparison study showed that rarely reported PAHs from Chinese cigarettes can contribute over half of ILCRΣPAHs for several American cigarettes, highlighting the imperativeness to improve the diversity of analytes for Chinese cigarettes. Adults would need to inhale the air-borne PAHs with a BaP equivalent concentration of at least 53.1 ng/m3 to reach the ILCR value comparable to that obtained from smoking.


Assuntos
Poluentes Atmosféricos , Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Produtos do Tabaco , Humanos , Adulto , Neoplasias/induzido quimicamente , Neoplasias/epidemiologia , Produtos do Tabaco/efeitos adversos , Nicotiana , China , Medição de Risco , Monitoramento Ambiental , Poluentes Atmosféricos/análise
2.
J Environ Manage ; 325(Pt A): 116411, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36274308

RESUMO

Wastewater treatment plants (WWTPs) discharge metric tons of microplastics (MPs) daily to aquatic and terrestrial environments worldwide. Herein we provide a holistic review on MPs in the WWTPs, highlighting recent advances in sampling and analysis, improved understanding of their sources, occurrence, and degradation in treatment steps, and the potential risks MPs pose after being discharged in treated effluent and sludge. We discuss the merits and limitations of the various sampling and analytical approaches to determine MPs in major WWTP compartments; highlight new research on MP profiles (abundance, physical characteristics, and compositions) in raw sewage, treated effluent, and waste sludge, which are of particular interest when assessing MP sources, removal rates, and fate; and emphasize mechanisms of MP fragmentation and degradation within WWTPs as well as the potential sorption of wastewater contaminants to the MPs. We find that robust and standardized methods for determining MPs in WWTP samples is still urgently needed, and that complete removal of MPs from wastewater by WWTPs is not guaranteed, although the vast majority of MPs end up in sludge. Areas of research that deserve further attention include the fate of small (<20 µm) MPs, abiotic and biotic fragmentation of MPs in the WWTPs, and more empirical data with concentrations on a mass basis.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Microplásticos , Águas Residuárias/análise , Plásticos , Esgotos/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Monitoramento Ambiental
3.
Environ Geochem Health ; 45(8): 5813-5827, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37148428

RESUMO

In this research, enrichment factor (EF) and pollution load index were utilized to explore the contamination characteristics of toxic elements (TEs) in park dust. The results exhibited that park dust in the study area was mainly moderately polluted, and the EF values of dust Cd, Zn, Pb, Cu and Sb were all > 1. The concentrations of Cr, Cu, Zn and Pb increased with the decrease of dust particle size. The investigation results of chemical speciation and bioavailability of TEs showed that Zn had the highest bioavailability. Three sources of TEs were determined by positive matrix factorization model, Pearson correlation analysis and geostatistical analysis, comprising factor 1 mixed sources of industrial and transportation activities (46.62%), factor 2 natural source (25.56%) and factor 3 mixed source of agricultural activities and the aging of park infrastructures (27.82%). Potential ecological risk (PER) and human health risk (HHR) models based on source apportionment were exploited to estimate PER and HHR of TEs from different sources. The mean PER value of TEs in the park dust was 114, indicating that ecological risk in the study area was relatively high. Factor 1 contributed the most to PER, and the pollution of Cd was the most serious. There were no significant carcinogenic and non-carcinogenic risks for children and adults in the study area. And factor 3 was the biggest source of non-carcinogenic risk, and As, Cr and Pb were the chief contributor to non-carcinogenic risk. The primary source of carcinogenic risk was factor 2, and Cr was the cardinal cancer risk element.


Assuntos
Monitoramento Ambiental , Metais Pesados , Adulto , Criança , Humanos , Monitoramento Ambiental/métodos , Poeira/análise , Cádmio/toxicidade , Cádmio/análise , Chumbo/análise , Metais Pesados/toxicidade , Metais Pesados/análise , Medição de Risco/métodos , Carcinógenos/análise , China , Cidades
4.
Environ Monit Assess ; 194(3): 206, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190909

RESUMO

Non-ferrous metal smelting activities have always been considered as one of the foremost anthropogenic sources of potentially toxic elements (PTEs). The enrichment factor (EF) and pollution load index (PLI) were used to evaluate the pollution level of soil PTEs; positive matrix factorization (PMF), correlation analysis, and geostatistics were utilized to quantify the sources of soil PTEs; and potential ecological risk (PER) and human health risk (HHR) of different sources from farmland, construction land, and natural land were quantifiably determined via combined PTE sources with PER and HHR assessment models. Taking the smelting area of Daye City as an example, the evaluation results of EF and PLI showed that the soil PTE pollution in the study area was serious, especially Cd and Cu. And four sources were quantitatively allocated as agricultural practices (12.14%), traffic emissions (23.07%), natural sources (33.46%), and industrial activities (31.33%). For PER, industrial activities were the largest contributor to PER, accounting for 55.66%, 56.30%, and 55.36% of farmland, construction land, and natural land, respectively, and Cd was the most dangerous element. In terms of HHR, industrial activities were also the cardinal contributors under the three land use types. Children were exposed to serious non-carcinogenic risks under three land use patterns and slight carcinogenic risk in construction land (1.06E - 04). Significantly, the carcinogenic risk of children in farmland (9.06 × 10-5) was very close to the threshold (1 × 10-4), which requires attention. Both non-carcinogenic and carcinogenic risk for adults were all at acceptable levels. The health risks (carcinogenic and non-carcinogenic risks) of children from four different sources were distinctly higher than those of adults. Consequently, strict management and control of industrial activities should be given priority, and the management of agricultural practices should not be ignored.


Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Criança , China , Monitoramento Ambiental , Poluição Ambiental/análise , Humanos , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise
5.
Environ Sci Technol ; 55(8): 4483-4493, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33715364

RESUMO

The residential sector is a major source of air pollutant emission inventory uncertainties. A nationwide field emission measurement campaign was conducted in rural China to evaluate the variabilities of realistic emission factors (EFs) from indoor solid fuel combustion. For a total of 1313 burning events, the overall average EFs (±standard deviation) of PM2.5 were 8.93 ± 6.95 and 7.33 ± 9.01 g/kg for biomass and coals, respectively, and 89.3 ± 51.2 and 114 ± 87 g/kg for CO. Higher EFs were found from burning of uncompressed straws, while lower EFs were found from processed biomass pellets, coal briquettes, and relatively clean anthracite coals. Modified combustion efficiency was found to be the most significant factor associated with variations in CO EFs, whereas for PM2.5, fuel and stove differences determined its variations. Weak correlations between PM2.5 and CO indicated high uncertainties in using CO as a surrogate for PM2.5. EFs accurately fit log-normal distributions, and obvious spatial heterogeneity was observed attributed to different fuel-stove combinations across the country. Emission estimation variabilities, which are determined by the interquartile ranges divided by the median values, were notably reduced when spatially resolved EFs were adopted in the inventory.


Assuntos
Poluentes Atmosféricos , Utensílios Domésticos , Poluentes Atmosféricos/análise , Biomassa , China , Carvão Mineral/análise , Material Particulado/análise
6.
Ecotoxicol Environ Saf ; 208: 111489, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33080423

RESUMO

To make pollution evaluation of potentially hazardous elements in the soil more accurately, the regional geochemical baseline concentrations of eight potentially hazardous elements (Cr, Ni, Cu, Zn, As, Cd, Hg, and Pb) were established in Huilai County using cumulative frequency distribution curves. Then, the pollution load index and enrichment factor were applied to estimate the contamination levels, based on these geochemical baseline concentrations. The results suggested that topsoil was moderately polluted by potentially hazardous elements, while Cd pollution in the construction land and As pollution in the farmland was relatively severe. The possible sources of eight potentially hazardous elements were analyzed by correlation analysis, geostatistics and positive matrix factorization. Four sources have been determined and apportioned, namely industrial activities, natural sources, agricultural practices, and traffic emissions. Combining the health risk assessment with the source profiles, the health risks quantified from four sources were estimated under farmland, construction land, and woodland. The results showed that agricultural practices were the most main source of non-cancer and cancer risks under woodland and farmland for adults; industrial activities were the most main source of non-cancer and cancer risks under construction land for adults. Children's health risks, both carcinogenic risk and non-carcinogenic risk, were greater than adults, and the health risk trends of adults and children showed similarities. Therefore, agricultural practices under woodland and farmland should be controlled and managed as a priority, while industrial activities should be given priority to control and management under construction land.


Assuntos
Exposição Ambiental , Metais/análise , Poluentes do Solo/análise , Solo/química , China , Monitoramento Ambiental , Humanos , Medição de Risco
7.
Arch Environ Contam Toxicol ; 75(3): 495-501, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30069574

RESUMO

A reliable method for simultaneous determination of monomethylmercury (MeHg) and monoethylmercury (EtHg) in water by gas chromatography with cold vapor atomic fluorescence spectrometry was developed and validated. The experimental conditions, including derivatisation pH, distillation, and complexing agents, were optimized in detail. The absolute detection limits (3σ) were 0.007 ng/L as Hg for MeHg and 0.004 ng/L as Hg for EtHg. The relative standard deviation values (n = 6) for 0.1 ng/L of MeHg and EtHg were 2.7 and 2.1%, 1.0 ng/L of MeHg and EtHg were 6.0 and 6.9%, 4.4 ng/L of MeHg and EtHg were 2.8 and 2.7%, respectively. In addition, five different water samples were analyzed, including river water (RW), effluent wastewater (EW), seawater (SW), industrial wastewater (IW), underground water (UW), and the spiked recoveries of MeHg, were all greater than 85%, whereas EtHg was 86.0% in RW, 83.0% in EW, 87.0% in UW, 82.6% in SW, and 80% in IW. Formation of artefact MeHg and EtHg was studied during distillation. The level of artefact MeHg formed by methylation of Hg(II) during distillation varies from ~ 0.002 to 0.009% for river water and from ~ 0.002 to 0.004% for effluent wastewater, ethylation of Hg(II) was not observed. The method was validated for a variety of water sources with Hg(II) concentrations under 440 ng/L.


Assuntos
Compostos de Etilmercúrio/análise , Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise , Cromatografia Gasosa/métodos , Destilação , Água Doce , Limite de Detecção , Espectrometria de Fluorescência/métodos , Águas Residuárias/análise , Água/análise
8.
Environ Sci Technol ; 50(7): 4008-17, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26967261

RESUMO

The continuous disposal of persistent organic pollutants (POPs) in South Africa (SA) warrants concern about their detrimental effects on humans and wildlife. We surveyed six dolphin species (n = 90) incidentally captured in shark net installations or stranded off the SA east and south coast from 2005 to 2009 to study the POP exposure. Sousa plumbea, an inshore and estuarine species, was found to be the most contaminated by total POPs (21 100 ng g(-1) lw) of all the dolphins off SA, followed by Tursiops aduncus (19 800 ng g(-1) lw), Lagenodelphis hosei (13 600 ng g(-1) lw), and Delphinus capensis (5500 ng g(-1) lw), whereas POP levels in the offshore or pelagic delphinids were much lower. In all delphinids, dominant pollutants were dichlorodiphenyltrichloroethanes (DDTs), which represented more than 60% of the total concentration of total POPs, followed by polychlorinated biphenyls (PCBs, 30%). Concentrations of DDTs in S. plumbea and T. aduncus off SA were among the highest levels reported in delphinids globally. Approximately half of the adult T. aduncus had PCB concentrations above the effect threshold for impairment of immune functions. The concentrations of Mirex and Dieldrin in SA delphinids were higher than those found in species from other regions of the Southern Hemisphere.


Assuntos
Golfinhos/metabolismo , Monitoramento Ambiental , Compostos Orgânicos/análise , Análise Espacial , Poluentes Químicos da Água/análise , Adulto , Animais , Feminino , Geografia , Humanos , Masculino , África do Sul , Especificidade da Espécie , Fatores de Tempo
9.
Arch Environ Contam Toxicol ; 70(4): 692-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26376989

RESUMO

Coupling air pollutants with particular meteorological conditions can induce air pollution episodes. To our knowledge, how typhoons influence mercury (Hg) as an extreme weather phenomena has not been reported. Gaseous elemental Hg (GEM) was measured during a time period (from September 16, 2011 to October 9, 2011) that included three typhoons (Haitang, Nesat, and Nalgae) at the Wuzhishan National Atmospheric Background Station. The GEM concentration during these typhoons ranged from 1.81 to 4.73 ng/m(3) (2.97 ± 0.58 ng/m(3)), 1.27 to 4.42 ng/m(3) (2.69 ± 0.83 ng/m(3)), and 1.43 to 2.99 ng/m(3) (2.47 ± 0.32 ng/m(3)), which was higher than for the non-typhoon period (1.14-2.93 ng/m(3), 1.61 ± 0.52 ng/m(3)). Simultaneously, the three typhoon periods exhibited a significant positive correlation between the GEM concentration and wind speed. These results differ from the common belief that lower pollutant concentrations will occur due to a typhoon accelerating pollutant diffusion. Changes in the wind direction and long range pollutant transport from the Chinese mainland can reasonably account for this abnormality. There was a significantly positive correlation between the GEM and SO2, NO x , CO, and O3 levels during the three typhoons periods, which indicates they came from the same sources or areas. A backward trajectory analysis and the concentration weighted field at our monitoring site indicated that clean air masses mainly came from Southeast Asia or the southeast and northeast sea surfaces during non-typhoon periods, while polluted air masses came from the Chinese mainland during the three typhoon periods. The results implied that the increased GEM concentrations in the Wuzhi Mountain were caused by the long-range atmospheric transport of Hg from the Chinese mainland during the typhoon periods. The combustion of coal may be the main emission sources.


Assuntos
Poluentes Atmosféricos/análise , Tempestades Ciclônicas , Monitoramento Ambiental , Mercúrio/análise , Poluição do Ar/estatística & dados numéricos , China
10.
Bull Environ Contam Toxicol ; 94(4): 503-10, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25666566

RESUMO

In this study, surface sediment samples were collected from 11 sites in the Dayan River near an electronic waste site in Qingyuan. Heavy metals, polychlorinated biphenyls (PBDEs) and perfluoroalkyl substances (PFASs) were detected. The concentrations of Cu, Zn, Pb and Cd ranged from 12.1 to 641, 47.1 to 891, 39.2 to 641, 0.12 to 2.07 mg/kg dw, respectively. Total PBDEs ranged between 0.052 and 126.64 ng/g dw. BDE-47 and BDE-99 were the predominant PBDEs. The concentrations of PFASs in sediments ranged between 0.01 and 3.72 ng/g dw. The perfluorooctane sulfonate was predominantly PFASs. The strong positive correlations among Cu, Zn, perfluorooctanoic acid and PBDEs indicate that these contaminants were associated with each other and may share a common anthropogenic source in the sediments of the Dayan River.


Assuntos
Monitoramento Ambiental/estatística & dados numéricos , Poluentes Ambientais/análise , Sedimentos Geológicos/química , Metais Pesados/análise , Bifenilos Policlorados/análise , Rios/química , Ácidos Alcanossulfônicos/análise , Caprilatos/análise , China , Monitoramento Ambiental/métodos , Fluorocarbonos/análise , Éteres Difenil Halogenados/análise
11.
Environ Res ; 135: 1-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25261857

RESUMO

Large amounts of carcinogenic polycyclic aromatic hydrocarbons (PAHs), benzene and toluene (BT) might be emitted from incomplete combustion reactions in both coal tar factories and biomass fuels in rural China. The health effects arising from exposure to PAHs and BT are a concern for residents of rural areas close to coal tar plants. To assess the environmental risk and major exposure sources, 100 coke plant workers and 25 farmers in Qujing, China were recruited. The levels of 10 mono-hydroxylated PAHs (OH-PAHs), four BT metabolites and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the urine collected from the subjects were measured. The 8-OHdG levels in the urine were determined to evaluate the oxidative DNA damage induced by the PAHs and BT. The results showed that the levels of the OH-PAHs, particularly those of 1-hydroxynathalene and 1-hydroxypyrene, in the farmers were 1-7 times higher than those in the workers. The concentrations of the BT metabolites were comparable between the workers and farmers. Although the exact work location within a coke oven plant might affect the levels of the OH-PAHs, one-way ANOVA revealed no significant differences for either the OH-PAHs levels or the BT concentrations among the three groups working at different work sites. The geometric mean concentration (9.17 µg/g creatinine) of 8-OHdG was significantly higher in the farmers than in the plant workers (6.27 µg/g creatinine). The levels of 8-OHdG did not correlate with the total concentrations of OH-PAHs and the total levels of BT metabolites. Incompletely combusted biomass fuels might be the major exposure source, contributing more PAHs and BT to the local residents of Qujing. The estimated daily intakes (EDIs) of naphthalene and fluorene for all of the workers and most of the farmers were below the reference doses (RfDs) recommended by the U.S. Environmental Protection Agency (EPA), except for the pyrene levels in two farmers. However, the EDIs of benzene in the workers and local farmers ranged from 590 to 7239 µg/day, and these levels were 2- to 30-fold higher than the RfDs recommended by the EPA. Biomass fuel combustion and industrial activities related to coal tar were the major sources of the PAH and BT exposure in the local residents. Using biomass fuels for household cooking and heating explains the higher exposure levels observed in the farmers relative to the workers at the nearby coal tar-related industrial facility.


Assuntos
Poluentes Ocupacionais do Ar/urina , Biocombustíveis/análise , Alcatrão/química , Dano ao DNA/efeitos dos fármacos , Exposição Ocupacional/análise , 8-Hidroxi-2'-Desoxiguanosina , Agricultura , Poluentes Ocupacionais do Ar/toxicidade , Análise de Variância , Benzeno/análise , China , Desoxiguanosina/análogos & derivados , Desoxiguanosina/urina , Monitoramento Ambiental/estatística & dados numéricos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/urina , Tolueno/urina
12.
Huan Jing Ke Xue ; 45(2): 909-919, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471929

RESUMO

Based on the typical city survey data and statistics of Guangdong Province, a 2018-based 3 km×3 km gridded greenhouse gas emissions inventory was developed for Guangdong Province using the combination of top-down and bottom-up emission factor methods. The inventory covered the CO2, CH4, and N2O emissions from energy, industrial processes, agriculture, land use change and forest, waste management, and indirect sources. The results showed that estimates for CO2, CH4, and N2O in Guangdong Province for the year 2018 were 8.5×108, 1.9×106, and 1.1×105 t, respectively, and 8.5×108, 4.0×107, and 3.4×107 t by equivalent carbon dioxide, totaling 9.2×108 t. CO2 was the main greenhouse gas in Guangdong Province, accounting for 92.0% of the total emissions. Energy and indirect sources were the main emission sources, accounting for 77.9% and 7.6%, respectively, totaling 85.5%. Spatial distributions illustrated that most grids were greenhouse gas emissions, whereas some others were greenhouse gas sinks; the greenhouse gas emissions were distributed mainly in the Pearl River Delta region and had certain characteristics of distribution along the road network and channels. The greenhouse gas grids of high emission were mainly the locations of high energy-consuming enterprises such as large power plants, steel mills, and cement plants.

13.
Toxics ; 11(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36977022

RESUMO

In this study, we compared the concentrations of the heavy metals Cd, Cr, Cu, Zn, Ni, and Pb in the surface soils of urban parks in Wuhan, Hubei Province, with those in the surface soils of urban parks worldwide. The soil contamination data were assessed using enrichment factors and spatial analysis of heavy metals using inverse distance weighting and quantitative analysis of heavy metal sources with a positive definite matrix factor (PMF) receptor model. Further, a probabilistic health risk assessment of children and adults using Monte Carlo simulation was performed. The average Cd, Cr, Cu, Zn, Ni, and Pb concentrations in the surface soils of urban parks were 2.52, 58.74, 31.39, 186.28, 27.00, and 34.89 mg·kg-1, respectively, which exceeded the average soil background values in Hubei. From the inverse distance spatial interpolation map, heavy metal contamination was primarily observed to be present to the southwest of the main urban area. The PMF model resolved four sources: mixed traffic and industrial emission, natural, agricultural, and traffic sources, with relative contributions of 23.9%, 19.3%, 23.4%, and 33.4%, respectively. The Monte Carlo health risk evaluation model demonstrated negligible noncancer risks for both adult and child populations, whereas the health effects of Cd and Cr on children were a concern for cancer risks.

14.
Sci Total Environ ; 866: 161295, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36592911

RESUMO

Printing industry is one of the most important sources of industrial volatile organic compound (VOC) emissions in China, and is thus a key industrial sector in terms of VOC control. However, process-based VOC emission and speciation from the printing industry have not been well identified, mainly owing to the poor emission factors (EFs) and diversity of source profiles. In this study, we systematically characterized process-based VOC emissions from the printing industry for the period of 2010-2019, through the establishment of improved emission factors and composite source profiles. VOC emissions from the printing industry were found to continuously increase from 2010 to 2018, reaching their maximum in 2018 at 939.8 Gg, but started to decrease afterwards. The substantial growth is driven by the large demand for ink and adhesive and the absence of effective control measures in the printing industry. The total VOC emissions and ozone formation potential (OFP) in China in 2019 were 916.1 Gg and 1834.5 Gg, respectively. Gravure printing and the compound process were the processes that contributed the most to both emissions and OFP. Rapidly developing provinces such as Guangdong, Jiangsu, and Zhejiang were the largest contributors to emissions. Oxygenated VOCs (OVOCs) accounted for most of the VOC emissions, followed by alkanes and aromatics, while aromatics were the dominant groups for total OFP, followed by alkenes/alkynes and OVOCs. Ethyl acetate, toluene, isopropanol, isopentane, and n-pentane were the top five VOC species in terms of emissions, while toluene, ethyl acetate, 1,3-butadiene, isopentane, and 1-butene were the top five species in terms of OFP. Scientific and precise control policy were proposed, involving four aspects: environmental access, emission standards, classification and management, and research on source substitution. We believe our study will provide an important reference for the systematic characterization and control policy of VOC emissions from other industries.

15.
Huan Jing Ke Xue ; 44(5): 2461-2471, 2023 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-37177921

RESUMO

Ozone pollution is intensifying in China, and its related studies are weak in non-focus regions and non-focus cities. Here, we investigated the characteristics and sources of volatile organic compounds (VOCs) at three sampling sites in Zhanjiang. We analyzed 101 VOCs using a gas chromatography-mass spectrometry/hydrogen ion flame detector (GC-MS/FID) and high-performance liquid chromatography (HPLC) using a Summa canister and DNPH adsorption tube. We calculated the ozone formation potential (OFP) of VOCs and used the positive matrix factorization (PMF) model for source apportionment. The results showed that the mean φ(TVOCs) was 1.28×10-7, and the dominant contributors were OVOCs (52%), followed by alkanes (36%), alkenes (7%), halogenated hydrocarbons (2.42%), aromatic hydrocarbons (1.61%), and alkynes (0.78%). The diurnal variation in VOCs was influenced by photochemical reactions; the ratio of aromatic hydrocarbons and alkanes was high in the morning and evening and low at noon, whereas OVOCs had a low ratio in the morning and noon and high in the evening, influenced by primary emissions and the upwind transport of pollutants. The OFP was 3.28×10-7, and the dominant species were formaldehyde, butene, n-butane, butanone, and acetaldehyde.The analysis of X/E values (characterizing the aging degree of air masses) and backward trajectories of air masses showed that during the sampling, when influenced by air masses from the south or southwest, X/E was small, and the aging degree of air masses was high, indicating the influence of regional transport; when influenced by air masses from the east or southeast direction, X/E was large, and the air masses were fresh, and VOCs were mainly from local emissions. Six emission sources of VOCs, including industrial emissions, gasoline vehicle exhaust and gasoline evaporation, regional background and transport sources, biomass combustion, diesel vehicles and marine shipping emissions, and solvent use emission sources, were resolved using the PMF model, with contributions of 36.05%, 28.99%, 13.84%, 10.13%, 7.05%, and 3.95%, respectively.Zhanjiang should strengthen the supervision of formaldehyde, butene, n-butane and butanone, industry sources, and mobile sources as the focus of control.

16.
Huan Jing Ke Xue ; 44(11): 5915-5923, 2023 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-37973076

RESUMO

The printing industry has always been the key source of volatile organic compound(VOC) emissions in China. However, owing to the complexity of raw materials and processes, the fine emission inventory and its future emission reduction potential of VOCs from the printing industry have not been well characterized. In this study, the existing VOCs emission factors of the printing industry were improved, considering the neglected semi/intermediate VOCs(S/IVOCs). An emissions inventory of VOCs from the printing industry in the period of 2011-2020 in China was compiled. Through scenario analysis, the emission of VOCs under different scenarios in 2030 was predicted, and the emission reduction potential was analyzed. VOCs emissions from the printing industry in China increased first and then decreased in the period of 2011-2020. Compared with that in 2011, VOCs emissions increased by 29.6% in 2020, with an average annual growth rate of 3.0%. This was mainly due to the increasing consumption demand in the printing industry market and the lack of effective measures for integrated management of VOCs. The VOCs emission of the printing industry in China in 2020 was 861 Gg. Gravure printing and packaging processing were the two most important processes, accounting for 52.0% and 28.7%, respectively. Guangdong, Jiangsu, and Zhejiang were the largest contributors to VOC emissions, accounting for 44.12% of the total emissions. VOCs emissions of the printing industry in 2030 were 1187 Gg, 684 Gg, and 362 Gg for the baseline scenario, the general control scenario, and the strict control scenario, respectively. Compared to that in 2020, emissions under different control scenarios in 2030 increased by 37.9% and decreased by 20.6% and 57.9%, respectively. Gravure printing and packaging processing are still the focus of emission reduction.

17.
Huan Jing Ke Xue ; 44(10): 5418-5430, 2023 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-37827760

RESUMO

The situation of air pollution in Guanzhong Plain has been increasing in recent years; hence, it is very important to study the characteristics of volatile organic compounds (VOCs) and their health risks in urban functional zones. We analyzed 115 VOCs using gas chromatography-mass spectrometry/hydrogen ion flame detector (GC-MS/FID) and high performance liquid chromatography (HPLC) at four sampling sites in the traffic, comprehensive, industrial, and scenic zones of Baoji. We analyzed the main components and key species in the different functional zones. Ozone formation potential (OFP),·OH consumption rate (L·OH), and secondary organic aerosol formation potential (SOAFP) were used to evaluate the environmental impact, and the hazard index (HI) and lifetime cancer risk (LCR) methods were employed. The results revealed that the mean values of φ(TVOCs) in the traffic, comprehensive, industrial, and scenic zones were (59.63±23.85)×10-9, (42.92±11.88)×10-9, (60.27±24.09)×10-9, and (55.54±7.44)×10-9, respectively. The dominant contributors at the traffic zone were alkanes, and those at the other functional zones were OVOCs. Acetaldehyde, acetone, n-butane, and isopentane were abundant at different functional zones. According to the characteristic ratios of VOCs, the average ratio of toluene to benzene (T/B) at the traffic, comprehensive, industrial, and scenic zones were 1.84, 2.39, 1.28, and 1.64, respectively, and the ratio of iso-pentane to n-pentane (i/n) was mainly between 1 and 4. The results indicated that VOCs in Baoji were significantly affected by vehicle emissions and gasoline evaporation, biomass and coal combustion, and industrial coatings and foundry. The ratio of m/p-xylene to ethylbenzene (X/E) was lower than 2 at the four functional zones, and the minimum was 1.79 at the scenic zones; the results revealed that X/E was small, and the aging degree of air masses was high, indicating the influence of regional transport. According to the ratio of formaldehyde to acetaldehyde (C1/C2) and the ratio of acetaldehyde to propanal (C2/C3), it was suggested that there may have been evident anthropogenic emission sources, and the photochemical reaction had an important effect on aldehydes and ketones. Environmental impact assessment results revealed that OVOCs and alkenes contributed significantly to OFP and OFP from large to small was as follows:industrial zone>scenic zone>traffic zone>comprehensive zone. The range of L·OH in each functional zone was 8.77-15.82 s-1, with isoprene contributing the most in the industrial zone and acetaldehyde contributing the most at other functional zones. The SOAFP of each functional zone was as follows:scenic zone>comprehensive zone>traffic zone>industrial zone. Toluene, m/p-xylene, and isoprene were the notable species. According to the health risk assessment of EPA, the HI of toxic VOCs in all functional zones was lower than 1, which was at an acceptable level. However, the number of days with HI>1 in industrial zones accounted for 42.86% of the total sampling days, indicating a high risk. The lifetime carcinogenic risk (LCR) of the traffic, comprehensive, industrial, and scenic zones were 1.83×10-5, 1.21×10-5, 1.85×10-5, and 1.63×10-5, respectively, which were all in grade Ⅲ of the rating system, indicating a high probability of cancer risk. Species with LCR greater than 10-6 were formaldehyde; acetaldehyde; 1,2-dibromoethane; 1,2-dichloroethane; 1,2-dichloropropane; and chloroform.


Assuntos
Poluentes Atmosféricos , Neoplasias , Ozônio , Compostos Orgânicos Voláteis , Humanos , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , Emissões de Veículos/análise , Ozônio/análise , Tolueno/análise , Medição de Risco , Acetaldeído/análise , Formaldeído/análise , China
18.
Artigo em Inglês | MEDLINE | ID: mdl-35055669

RESUMO

Benzene, toluene, ethylbenzene and xylene isomers (BTEX) have raised increasing concern due to their adverse effects on human health. In this study, a coking factory and four communities nearby were selected as the research area. Atmospheric BTEX samples were collected and determined by a preconcentrator GC-MS method. Four biomarkers in the morning urine samples of 174 participants from the communities were measured by LC-MS. The health risks of BTEX exposure via inhalation were estimated. This study aimed to investigate the influence of external BTEX exposure on the internal biomarker levels and quantitatively evaluate the health risk of populations near the coking industry. The results showed that the average total BTEX concentration in residential area was 7.17 ± 7.24 µg m-3. Trans,trans-muconic acid (T,T-MA) was the urinary biomarker with the greatest average level (127 ± 285 µg g-1 crt). Similar spatial trends can be observed between atmospheric benzene concentration and internal biomarker levels. The mean values of the LCR for male and female residents were 2.15 × 10-5 and 2.05 × 10-5, respectively. The results of the risk assessment indicated that special attention was required for the non-occupational residents around the area.


Assuntos
Poluentes Atmosféricos , Coque , Poluentes Atmosféricos/análise , Benzeno/análise , Derivados de Benzeno/análise , Biomarcadores/urina , Monitoramento Ambiental/métodos , Feminino , Humanos , Masculino , Medição de Risco , Tolueno/análise , Xilenos/análise
19.
Huan Jing Ke Xue ; 43(6): 2957-2965, 2022 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-35686765

RESUMO

Based on the tropical cyclone track data in the northwest Pacific Ocean from 2015 to 2020, meteorological observation data, and ozone concentration monitoring data in the Pearl River Delta (PRD), the impacts of four tropical cyclones, namely the westbound tropical cyclone (type A), East China Sea tropical cyclone (type B), offshore tropical cyclone (type C), and offshore tropical cyclone (type D), on ozone concentration in the PRD were analyzed. The results showed that:under the influence of the type A tropical cyclone, the risk of regional ozone concentration exceeding the standard exhibited little change. Under the influence of the type B tropical cyclone, the risk of ozone exceeding the standard in the PRD was obviously increased. Under the influence of the type C tropical cyclone, the risk of regional ozone exceeding the standard obviously increased, but the increase was weaker than that of the type B tropical cyclone. The type D tropical cyclone was far away from the Chinese mainland and had little influence on ozone concentration in the PRD. When the type A or type C tropical cyclones occurred, the average daily maximum 8-hour average ozone concentration (MDA8) in the PRD region increased by approximately 5 µg·m-3, and the ozone MDA8 in some cities may have decreased. When the type B tropical cyclone occurred, the regional ozone MDA8 increased by 19 µg·m-3 on average, and the ozone concentration in all cities increased significantly. Among them, the average increase in ozone MDA8 in Zhuhai and Jiangmen was relatively large, with an increase of greater than 20 µg·m-3. Generally speaking, the ozone concentration in cities in the western PRD was more affected by tropical cyclones. When the type B tropical cyclone occurred, solar radiation increased, sunshine duration lengthened, cloud cover decreased, air temperature rose, and relative humidity decreased in the PRD, all of which were beneficial to photochemical reactions. Meanwhile, downward flow increased in the boundary layer, and downward flow transported high-concentration ozone to the ground, which promoted the increase in ozone concentration on the ground. When type A or type C tropical cyclones occurred, the change in meteorological conditions was not entirely conducive to the increase in ozone concentration, and in some cases, even adverse meteorological conditions such as rainfall occurred, which led to the risk of regional ozone exceeding the standard being less than that of the type B tropical cyclone. Affected by tropical cyclones, sunshine hours and air temperature in western cities of the PRD increased more than those in eastern cities, which was more conducive to ozone generation.


Assuntos
Poluentes Atmosféricos , Tempestades Ciclônicas , Ozônio , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Ozônio/análise , Rios
20.
Environ Pollut ; 306: 119433, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35550129

RESUMO

Biomagnification of persistent toxic substances (PTSs) in food chains is of environmental concern, but studies on biotransport of PTSs across aquatic and riparian food chains are still incomplete. In this study, biomagnification of several PTSs including methylmercury (MeHg), polybrominated diphenyl ethers (PBDEs), and 1,2-bis (2,4,6-tribromophenoxy) ethane (BTBPE) was investigated in adjacent aquatic and riparian food webs. Concentrations of MeHg and PBDEs ranged from 2.37 to 353 ng/g dry weight (dw) and not detected (Nd) to 65.1 ng/g lipid weight (lw) in riparian samples, respectively, and ranged from Nd to 705 ng/g dw and Nd to 187 ng/g lw in aquatic samples, respectively. Concentrations of MeHg were significantly correlated with δ13C (p < 0.01) rather than δ15N (p > 0.05) values in riparian organisms, while a significant correlation was observed between concentrations of MeHg and δ15N (p < 0.01) in aquatic organisms. Biomagnification factors (BMFs) and trophic magnification factors (TMFs) of PBDE congeners were similar in riparian and aquatic food webs, while BMFs and TMFs of MeHg were much higher in aquatic food web than those in riparian food web. The results indicate the biotransport of MeHg from aquatic insects to terrestrial birds, and δ13C can be a promising ecological indicator for biotransport of pollutants across ecosystems.


Assuntos
Retardadores de Chama , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Peixes , Retardadores de Chama/análise , Cadeia Alimentar , Éteres Difenil Halogenados/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa