Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Metab ; 6(6): 1143-1160, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38658805

RESUMO

Metabolism is an indispensable part of T cell proliferation, activation and exhaustion, yet the metabolism of chimeric antigen receptor (CAR)-T cells remains incompletely understood. CARs are composed of extracellular domains-often single-chain variable fragments (scFvs)-that determine ligand specificity and intracellular domains that trigger signalling following antigen binding. Here, we show that CARs differing only in the scFv variously reprogramme T cell metabolism. Even without exposure to antigens, some CARs increase proliferation and nutrient uptake in T cells. Using stable isotope tracers and mass spectrometry, we observed basal metabolic fluxes through glycolysis doubling and amino acid uptake overtaking anaplerosis in CAR-T cells harbouring a rituximab scFv, unlike other similar anti-CD20 scFvs. Disparate rituximab and 14G2a-based anti-GD2 CAR-T cells are similarly hypermetabolic and channel excess nutrients to nitrogen overflow metabolism. Modest overflow metabolism of CAR-T cells and metabolic compatibility between cancer cells and CAR-T cells are identified as features of efficacious CAR-T cell therapy.


Assuntos
Receptores de Antígenos Quiméricos , Linfócitos T , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Anticorpos de Cadeia Única/metabolismo , Anticorpos de Cadeia Única/imunologia , Proliferação de Células , Ativação Linfocitária/imunologia , Imunoterapia Adotiva/métodos , Rituximab/farmacologia , Glicólise
2.
bioRxiv ; 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37066394

RESUMO

Metabolism is an indispensable part of T-cell proliferation, activation, and exhaustion, yet the metabolism of chimeric antigen receptor (CAR)-T cells remains incompletely understood. CARs are comprised of extracellular domains that determine cancer specificity, often using single-chain variable fragments (scFvs), and intracellular domains that trigger signaling upon antigen binding. Here we show that CARs differing only in the scFv reprogram T-cell metabolism differently. Even in the absence of antigens, some CARs increase proliferation and nutrient uptake in T cells. Using stable isotope tracers and mass spectrometry, we observe basal metabolic fluxes through glycolysis doubling and amino acid uptake overtaking anaplerosis in CAR-T cells harboring rituximab scFv, unlike other similar anti-CD20 scFvs. Disparate rituximab and 14g2a-based anti-GD2 CAR-T cells are similarly hypermetabolic and channel excess nutrients to nitrogen overflow metabolism. Since CAR-dependent metabolic reprogramming alters cellular energetics, nutrient utilization, and proliferation, metabolic profiling should be an integral part of CAR-T cell development.

3.
Cancer Immunol Res ; 11(2): 150-163, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36409926

RESUMO

Chimeric antigen receptors (CAR) are fusion proteins whose functional domains are often connected in a plug-and-play manner to generate multiple CAR variants. However, CARs with highly similar sequences can exhibit dramatic differences in function. Thus, approaches to rationally optimize CAR proteins are critical to the development of effective CAR T-cell therapies. Here, we report that as few as two amino-acid changes in nonsignaling domains of a CAR were able to significantly enhance in vivo antitumor efficacy. We demonstrate juxtamembrane alanine insertion and single-chain variable fragment sequence hybridization as two strategies that could be combined to maximize CAR functionality, and describe a CD20 CAR that outperformed the CD19 CAR in antitumor efficacy in preclinical in vitro and in vivo assays. Precise changes in the CAR sequence drove dramatically different transcriptomic profiles upon antigen stimulation, with the most efficacious CAR inducing an enrichment in highly functional memory T cells upon antigen stimulation. These findings underscore the importance of sequence-level optimization to CAR T-cell function, and the protein-engineering strategy described here may be applied to the development of additional CARs against diverse antigens. See related Spotlight by Scheller and Hudecek, p. 142.


Assuntos
Receptores de Antígenos Quiméricos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Imunoterapia Adotiva , Engenharia de Proteínas , Antígenos de Neoplasias/imunologia
4.
Med ; 2(7): 785-787, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35590214

RESUMO

Although remarkably successful against liquid tumors, chimeric antigen receptor (CAR)-T cell therapy has been stymied by solid tumors, limited by inadequate specificity and poor efficacy. Pairing synthetic Notch (synNotch) receptors with CARs, Choe et al. and Hyrenius-Wittsten et al. engineer T cells that more precisely and potently combat solid tumors.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva , Neoplasias/terapia , Linfócitos T
5.
Nat Rev Drug Discov ; 20(7): 531-550, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33972771

RESUMO

The adoptive transfer of T cells that are engineered to express chimeric antigen receptors (CARs) has shown remarkable success in treating B cell malignancies but only limited efficacy against other cancer types, especially solid tumours. Compared with haematological diseases, solid tumours present a unique set of challenges, including a lack of robustly expressed, tumour-exclusive antigen targets as well as highly immunosuppressive and metabolically challenging tumour microenvironments that limit treatment safety and efficacy. Here, we review protein- and cell-engineering strategies that seek to overcome these obstacles and produce next-generation T cells with enhanced tumour specificity and sustained effector function for the treatment of solid malignancies.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Animais , Humanos , Engenharia de Proteínas , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética
6.
Curr Opin Biotechnol ; 60: 111-118, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30822698

RESUMO

Adoptive T-cell therapy has shown remarkable clinical efficacy in treating refractory hematological cancers. However, challenges presented by solid tumors impede the applicability of adoptive T-cell therapy to the majority of cancers. In order to engineer effective T-cell therapies targeting solid tumors, two synergistic design criteria-T-cell therapeutic programs and anti-tumor T-cell chassis-should be taken into consideration. Recent advances in synthetic biology have enabled genetic programming of therapeutic sense-and-respond modalities in T cells. Furthermore, systems-level integration of multi-omics datum have allowed researchers to holistically profile robust anti-tumor T-cell populations. In this review, we feature novel strategies that can be incorporated into adoptive T-cell therapy design-ushering in a new paradigm of solid tumor treatment options.


Assuntos
Neoplasias , Humanos , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T , Linfócitos T , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa