Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 656
Filtrar
1.
J Biol Chem ; 300(11): 107836, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39343006

RESUMO

MYC is one of the most extensively studied oncogenic proteins and is closely associated with the occurrence and progression of many tumors. Previous studies have shown that MYC regulates cell fate through its liquid-liquid phase separation mechanism, which is dependent on two disordered domains within its N-terminal transcriptional activation regions. In this study, we revealed that the negatively charged conserved region (E242-E261) of the MYC protein controls its condensation formation and irreversible aggregation through multivalent electrostatic interactions. Furthermore, deletion or mutation of the E242-E261 amino acids in the MYC protein enhances the transcriptional function of MYC by altering its aggregation capacity and subsequently promoting cancer cell proliferation. The discovery of the negatively charged region and its regulatory action on the phase separation of MYC provides a new understanding of the aggregation and function of MYC.

2.
J Biol Chem ; 300(10): 107780, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276941

RESUMO

Resistance to DNA-damaging agents is a major unsolved challenge for breast cancer patients undergoing chemotherapy. Here, we show that elevated expression of transcriptional repressor GATA binding 1 (TRPS1) is associated with lower drug sensitivity, reduced response rate, and poor prognosis in chemotherapy-treated breast cancer patients. Mechanistically, elevated TRPS1 expression promotes hyperactivity of DNA damage repair (DDR) in breast cancer cells. We provide evidence that TRPS1 dynamically localizes to DNA breaks in a Ku70-and Ku80-dependent manner and that TRPS1 is a new member of the DDR protein family. We also discover that the dynamics of TRPS1 assembly at DNA breaks is regulated by its reversible PARylation in the DDR, and that mutations of the PARylation sites on TRPS1 lead to increased sensitivity to chemotherapeutic drugs. Taken together, our findings provide new mechanistic insights into the DDR and chemoresistance in breast cancer patients and identify TRPS1 as a critical DDR protein. TRPS1 may also be considered as a target to improve chemo-sensitization strategies and, consequently, clinical outcomes for breast cancer patients.

3.
Acc Chem Res ; 57(5): 751-762, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38346006

RESUMO

ConspectusAfter decades of palladium dominating the realm of transition-metal-catalyzed cross-coupling, recent years have witnessed exciting advances in the development of new nickel-catalyzed cross-coupling reactions to form C(sp3) centers. Nickel possesses distinct properties compared with palladium, such as facile single-electron transfer to C(sp3) electrophiles and rapid C-C reductive elimination from NiIII. These properties, among others, make nickel particularly well-suited for reductive cross-coupling (RCC) in which two electrophiles are coupled and an exogenous reductant is used to turn over the metal catalyst. Ni-catalyzed RCCs use readily available and stable electrophiles as starting materials and exhibit good functional group tolerance, which makes them appealing for applications in the synthesis of complex molecules. Building upon the foundational work in Ni-catalyzed RCCs by the groups of Kumada, Durandetti, Weix, and others, as well as the advancements in Ni-catalyzed enantioselective redox-neutral cross-couplings led by Fu and co-workers, we initiated a program to explore the feasibility of developing highly enantioselective Ni-catalyzed RCCs. Our research has also been driven by a keen interest in unraveling the factors contributing to enantioinduction and electrophile activation as we seek new avenues for advancing our understanding and further developing these reactions.In the first part of this Account, we organize our reported methods on the basis of the identity of the C(sp3) electrophiles, including benzylic chlorides, N-hydroxyphthalimide (NHP) esters, and α-chloro esters and nitriles. We highlight how the selection of specific chiral ligands plays a pivotal role in achieving high cross-selectivity and enantioselectivity. In addition, we show that reduction can be accomplished not only with heterogeneous reductants, such as Mn0, but also with the soluble organic reductant tetrakis(dimethylamino)ethylene (TDAE), as well as electrochemically. The use of homogeneous reductants, such as TDAE, is well suited for studying the mechanism of the transformation. Although this Account primarily focuses on RCCs, we also highlight our work using trifluoroborate (BF3K) salts as radical precursors for enantioselective dual-Ni/photoredox systems.At the end of this Account, we summarize the relevant mechanistic studies of two closely related asymmetric reductive alkenylation reactions developed in our laboratory and provide a context between our work and related mechanistic studies by others. We discuss how the ligand properties influence the rates and mechanisms of electrophile activation and how understanding the mode of C(sp3) radical generation can be used to optimize the yield of an RCC. Our research endeavors to offer insights on the intricate mechanisms at play in asymmetric Ni-catalyzed RCCs with the goal of using the rate of electrophile activation to improve the substrate scope of enantioselective RCCs. We anticipate that the insights we share in this Account can provide guidance for the development of new methods in this field.

4.
Arterioscler Thromb Vasc Biol ; 44(1): 254-270, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916416

RESUMO

BACKGROUND: Hyperglycemia-a symptom that characterizes diabetes-is highly associated with atherothrombotic complications. However, the underlying mechanism by which hyperglycemia fuels platelet activation and arterial thrombus formation is still not fully understood. METHODS: The profiles of polyunsaturated fatty acid metabolites in the plasma of patients with diabetes and healthy controls were determined with targeted metabolomics. FeCl3-induced carotid injury model was used to assess arterial thrombus formation in mice with endothelial cell (EC)-specific YAP (yes-associated protein) deletion or overexpression. Flow cytometry and clot retraction assay were used to evaluate platelet activation. RNA sequencing and multiple biochemical analyses were conducted to unravel the underlying mechanism. RESULTS: The plasma PGE2 (prostaglandin E2) concentration was elevated in patients with diabetes with thrombotic complications and positively correlated with platelet activation. The PGE2 synthetases COX-2 (cyclooxygenase-2) and mPGES-1 (microsomal prostaglandin E synthase-1) were found to be highly expressed in ECs but not in other type of vessel cells in arteries from both patients with diabetes and hyperglycemic mice, compared with nondiabetic individuals and control mice, respectively. A combination of RNA sequencing and ingenuity pathway analyses indicated the involvement of YAP signaling. EC-specific deletion of YAP limited platelet activation and arterial thrombosis in hyperglycemic mice, whereas EC-specific overexpression of YAP in mice mimicked the prothrombotic state of diabetes, without affecting hemostasis. Mechanistically, we found that hyperglycemia/high glucose-induced endothelial YAP nuclear translocation and subsequently transcriptional expression of COX-2 and mPGES-1 contributed to the elevation of PGE2 and platelet activation. Blockade of EP3 (prostaglandin E receptor 3) activation by oral administration of DG-041 reversed the hyperactivity of platelets and delayed thrombus formation in both EC-specific YAP-overexpressing and hyperglycemic mice. CONCLUSIONS: Collectively, our data suggest that hyperglycemia-induced endothelial YAP activation aggravates platelet activation and arterial thrombus formation via PGE2/EP3 signaling. Targeting EP3 with DG-041 might be therapeutic for diabetes-related thrombosis.


Assuntos
Diabetes Mellitus , Hiperglicemia , Trombose , Animais , Humanos , Camundongos , Plaquetas/metabolismo , Ciclo-Oxigenase 2/metabolismo , Diabetes Mellitus/metabolismo , Dinoprostona/metabolismo , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Camundongos Obesos , Trombose/genética , Trombose/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(22): e2200230119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35617432

RESUMO

Brain metastases, including prevalent breast-to-brain metastasis (B2BM), represent an urgent unmet medical need in the care of cancer due to a lack of effective therapies. Immune evasion is essential for cancer cells to metastasize to the brain tissue for brain metastasis. However, the intrinsic genetic circuits that enable cancer cells to avoid immune-mediated killing in the brain microenvironment remain poorly understood. Here, we report that a brain-enriched long noncoding RNA (BMOR) expressed in B2BM cells is required for brain metastasis development and is both necessary and sufficient to drive cancer cells to colonize the brain tissue. Mechanistically, BMOR enables cancer cells to evade immune-mediated killing in the brain microenvironment for the development of brain metastasis by binding and inactivating IRF3. In preclinical brain metastasis murine models, locked nucleic acid-BMOR, a designed silencer targeting BMOR, is effective in suppressing the metastatic colonization of cancer cells in the brain for brain metastasis. Taken together, our study reveals a mechanism underlying B2BM immune evasion during cancer cell metastatic colonization of brain tissue for brain metastasis, where B2BM cells evade immune-mediated killing in the brain microenvironment by acquiring a brain-enriched long noncoding RNA genetic feature.


Assuntos
Neoplasias Encefálicas , Encéfalo , Neoplasias da Mama , Evasão da Resposta Imune , RNA Longo não Codificante , Animais , Encéfalo/imunologia , Encéfalo/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/secundário , Mama/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Evasão da Resposta Imune/genética , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Microambiente Tumoral
6.
J Am Chem Soc ; 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39413404

RESUMO

α-Aryl imides are common structural motifs in bioactive molecules and proteolysis-targeting chimeras designed for targeted protein degradation. An asymmetric Ni-catalyzed reductive cross-coupling of imide electrophiles and (hetero)aryl halides has been developed to synthesize enantioenriched α-arylglutarimides from simple starting materials. Judicious selection of electrophile pairs allows for coupling of both electron-rich and electron-deficient (hetero)aryl halides in good yields and enantioselectivities.

7.
Biochem Biophys Res Commun ; 710: 149862, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38593618

RESUMO

Zinc is an important trace element in the human body, and its homeostasis is closely related to amyotrophic lateral sclerosis (ALS). Cytoplasmic FUS proteins from patients with ALS aggregate their important pathologic markers. Liquid-liquid phase separation (LLPS) of FUS can lead to its aggregation. However, whether and how zinc homeostasis affects the aggregation of disease-associated FUS proteins in the cytoplasm remains unclear. Here, we found that zinc ion enhances LLPS and promotes the aggregation in the cytoplasm for FUS protein. In the FUS, the cysteine of the zinc finger (ZnF), recognizes and binds to zinc ions, reducing droplet mobility and enhancing protein aggregation in the cytoplasm. The mutation of FUS cysteine disrupts the dynamic regulatory switch of zinc ions and ZnF, resulting in insensitivity to zinc ions. These results suggest that the dynamic regulation of LLPS by binding with zinc ions may be a widespread mechanism and provide a new understanding of neurological diseases such as ALS and other ZnF protein-related diseases.


Assuntos
Esclerose Lateral Amiotrófica , Proteína FUS de Ligação a RNA , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Cisteína/genética , Mutação , Separação de Fases , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Zinco/metabolismo , Dedos de Zinco , Agregados Proteicos
8.
J Virol ; 97(6): e0043423, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37289052

RESUMO

Although influenza A viruses of several subtypes have occasionally infected humans, to date only those of the H1, H2, and H3 subtypes have led to pandemics and become established in humans. The detection of two human infections by avian H3N8 viruses in April and May of 2022 raised pandemic concerns. Recent studies have shown the H3N8 viruses were introduced into humans from poultry, although their genesis, prevalence, and transmissibility in mammals have not been fully elucidated. Findings generated from our systematic influenza surveillance showed that this H3N8 influenza virus was first detected in chickens in July 2021 and then disseminated and became established in chickens over wider regions of China. Phylogenetic analyses revealed that the H3 HA and N8 NA were derived from avian viruses prevalent in domestic ducks in the Guangxi-Guangdong region, while all internal genes were from enzootic poultry H9N2 viruses. The novel H3N8 viruses form independent lineages in the glycoprotein gene trees, but their internal genes are mixed with those of H9N2 viruses, indicating continuous gene exchange among these viruses. Experimental infection of ferrets with three chicken H3N8 viruses showed transmission through direct contact and inefficient transmission by airborne exposure. Examination of contemporary human sera detected only very limited antibody cross-reaction to these viruses. The continuing evolution of these viruses in poultry could pose an ongoing pandemic threat. IMPORTANCE A novel H3N8 virus with demonstrated zoonotic potential has emerged and disseminated in chickens in China. It was generated by reassortment between avian H3 and N8 virus(es) and long-term enzootic H9N2 viruses present in southern China. This H3N8 virus has maintained independent H3 and N8 gene lineages but continues to exchange internal genes with other H9N2 viruses to form novel variants. Our experimental studies showed that these H3N8 viruses were transmissible in ferrets, and serological data suggest that the human population lacks effective immunological protection against it. With its wide geographical distribution and continuing evolution in chickens, other spillovers to humans can be expected and might lead to more efficient transmission in humans.


Assuntos
Vírus da Influenza A Subtipo H3N8 , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Influenza Humana , Animais , Humanos , Influenza Humana/epidemiologia , Galinhas , Saúde Pública , Vírus da Influenza A Subtipo H9N2/genética , Filogenia , Furões , China/epidemiologia , Aves Domésticas
9.
J Transl Med ; 22(1): 465, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755664

RESUMO

Disturbance in mitochondrial homeostasis within proximal tubules is a critical characteristic associated with diabetic kidney disease (DKD). CaMKKß/AMPK signaling plays an important role in regulating mitochondrial homeostasis. Despite the downregulation of CaMKKß in DKD pathology, the underlying mechanism remains elusive. The expression of NEDD4L, which is primarily localized to renal proximal tubules, is significantly upregulated in the renal tubules of mice with DKD. Coimmunoprecipitation (Co-IP) assays revealed a physical interaction between NEDD4L and CaMKKß. Moreover, deletion of NEDD4L under high glucose conditions prevented rapid CaMKKß protein degradation. In vitro studies revealed that the aberrant expression of NEDD4L negatively influences the protein stability of CaMKKß. This study also explored the role of NEDD4L in DKD by using AAV-shNedd4L in db/db mice. These findings confirmed that NEDD4L inhibition leads to a decrease in urine protein excretion, tubulointerstitial fibrosis, and oxidative stress, and mitochondrial dysfunction. Further in vitro studies demonstrated that si-Nedd4L suppressed mitochondrial fission and reactive oxygen species (ROS) production, effects antagonized by si-CaMKKß. In summary, the findings provided herein provide strong evidence that dysregulated NEDD4L disturbs mitochondrial homeostasis by negatively modulating CaMKKß in the context of DKD. This evidence underscores the potential of therapeutic interventions targeting NEDD4L and CaMKKß to safeguard renal tubular function in the management of DKD.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Nefropatias Diabéticas , Regulação para Baixo , Homeostase , Mitocôndrias , Ubiquitina-Proteína Ligases Nedd4 , Animais , Humanos , Masculino , Camundongos , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Estresse Oxidativo , Estabilidade Proteica , Proteólise , Espécies Reativas de Oxigênio/metabolismo
10.
Opt Lett ; 49(15): 4162-4165, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090884

RESUMO

Based on the x-ray absorption edges of different elements, we simultaneously image and distinguish the composition of three differently shaped components of an object by using energy-resolved x-ray absorption ghost imaging (GI). The initial x-ray beam is spatially modulated by a series of Hadamard matrix masks, and the object is composed of three pieces of Mo, Ag, and Sn foil in the shape of a triangle, square, and circle, respectively. The transmitted x-ray intensity is measured by an energy-resolved single-pixel detector with a spectral resolution better than 0.8 keV. Through correlation of the transmission spectra with the corresponding Hadamard patterns, the spectral image of the sample is reconstructed, with a spatial resolution of 108 µm. Our experiment demonstrates a practical application of spectral ghost imaging, which has important potential for the noninvasive analysis of material composition and distribution in biology, medical science, and many other fields.

11.
Opt Lett ; 49(11): 3034-3037, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824321

RESUMO

Terahertz (THz) radiation from air plasma in the presence of pre-plasma in a collinear geometry is investigated experimentally, where the pre-plasma is formed by a pre-pulse with a Gaussian beam profile and the measured THz radiation is driven by a main laser pulse. The pre-plasma has a de-focusing effect for the main pulse passing through it, which reduces the effective length of the plasma filament formed by the main laser pulse for THz radiation. It is found that only the part not overlapped by the pre-plasma can actually produce THz radiation. Thus, the amplitude of the THz pulse driven by the main pulse can be modified by changing the spatial separation between two plasma filaments. The experimental observations are qualitatively in agreement with our numerical simulation results. It is also found that the change of the time delay between the pre-pulse and the main pulse does not change the THz radiation amplitude for a given spatial separation. This study suggests a practical way for the manipulation of THz waves through an interaction between laser plasma filaments.

12.
Phys Rev Lett ; 132(16): 165002, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38701476

RESUMO

We report the experimental measurement of millijoule terahertz (THz) radiation emitted in the backward direction from laser wakefields driven by a femtosecond laser pulse of few joules interacting with a gas target. By utilizing frequency-resolved energy measurement, it is found that the THz spectrum exhibits two peaks located at about 4.5 and 9.0 THz, respectively. In particular, the high frequency component emerges when the drive laser energy exceeds 1.26 J, at which electron acceleration in the forward direction is detected simultaneously. Theoretical analysis and particle-in-cell simulations indicate that the THz radiation is generated via mode conversion from the laser wakefields excited in plasma with an up-ramp profile, where radiations both at the local electron plasma frequency and its harmonics are produced. Such intense THz sources may find many applications in ultrafast science, e.g., manipulating the transient states of matter.

13.
Diabetes Obes Metab ; 26(10): 4571-4582, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39075925

RESUMO

AIM: To evaluate the efficacy and safety of insulin glargine 300 U/mL (Gla-300) in people with suboptimally controlled type 2 diabetes (T2D) in China. METHODS: INITIATION (NCT05002933) was a prospective, interventional, multicentre, single-arm, phase IV study conducted in China. Individuals with suboptimally controlled T2D who were insulin naïve or switching from another basal insulin (insulin experienced) were included. The primary endpoint was the change in HbA1c from baseline to week 24. Safety assessments included hypoglycaemia and adverse events (AEs). RESULTS: In total, 568 participants were enrolled and 562 initiated Gla-300 treatment (189 in the insulin-naïve subgroup; 373 in the insulin-experienced subgroup). At week 24, the mean ± standard error (SE) change in HbA1c from baseline was -0.91% ± 0.05% (-9.9 ± 0.5 mmol/mol; P < .0001). Significant HbA1c reductions were also observed in the insulin-naïve (mean ± SE change: -1.38% ± 0.09% [-15.1 ± 1.0 mmol/mol]) and insulin-experienced (-0.68% ± 0.05% [-7.4 ± 0.5 mmol/mol]) subgroups (both P < .0001). During the 24-week treatment period, the incidence of confirmed hypoglycaemia (plasma glucose ≤ 3.9 mmol/L) was 39.7% for all hypoglycaemia and 13.3% for nocturnal hypoglycaemia; the incidence of severe hypoglycaemia was low (0.5%). Overall, treatment-emergent AEs (TEAEs) were reported in 126 participants (22.4%), with no serious treatment-related TEAEs. CONCLUSIONS: Gla-300 was effective in improving glycaemic control and had a relatively low risk of hypoglycaemia in people with suboptimally controlled T2D who were insulin naïve or switching from another basal insulin in China.


Assuntos
Diabetes Mellitus Tipo 2 , Hemoglobinas Glicadas , Hipoglicemia , Hipoglicemiantes , Insulina Glargina , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Insulina Glargina/efeitos adversos , Insulina Glargina/uso terapêutico , Insulina Glargina/administração & dosagem , Masculino , Pessoa de Meia-Idade , Feminino , China/epidemiologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/administração & dosagem , Hemoglobinas Glicadas/análise , Hemoglobinas Glicadas/metabolismo , Hemoglobinas Glicadas/efeitos dos fármacos , Hipoglicemia/induzido quimicamente , Hipoglicemia/epidemiologia , Estudos Prospectivos , Idoso , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Resultado do Tratamento , Adulto , Controle Glicêmico/efeitos adversos
14.
Environ Sci Technol ; 58(1): 410-420, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38154084

RESUMO

SiO2 nanoparticles (SiO2NPs) are most widely available and coexisting with DOM at the mineral-water interface; however, the role of SiO2NPs in DOM fractionation and the underlying mechanisms have not been fully understood. Using Fourier transform ion cyclotron resonance mass spectrometry, combined with Fourier transform infrared spectroscopy and X-ray adsorption fine structure spectroscopy, was employed to investigate the adsorptive fractionation of litter layer-derived DOM on goethite coexisting with SiO2NPs under different pH conditions. Results indicated that the inhibitory effect of the coexisting SiO2NPs on OM sorbed by goethite was waning as environmental pH increased due to the reduced steric interactions and the concurrent elevated hydrogen bonding/hydrophobic partitioning interactions on the goethite surface. We observed the coexisting SiO2NPs inhibited the adsorption of high carboxylic-containing condensed aromatic/aromatics compounds on goethite under different pH conditions while improving the adsorption of highly unsaturated aliphatic/phenolic and carbohydrate-like compounds in an alkaline and/or circumneutral environment. More nitrogen-containing structures may favor the adsorption of phenolic and nonaromatic compounds to goethite by counteracting the negative effect of SiO2NPs. These findings suggest that DOM sequestration may be significantly regulated by the coexisting SiO2NPs at the mineral-water interface, which may further influence the carbon-nitrogen cycling and contaminant fate in natural environments.


Assuntos
Matéria Orgânica Dissolvida , Dióxido de Silício , Adsorção , Minerais/química , Compostos Orgânicos , Fenóis , Água , Nitrogênio
15.
Support Care Cancer ; 32(8): 561, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085696

RESUMO

Prostate cancer is one of the most common malignancies and a leading cause of death in men. Owing to its excellent anti-tumor effects, androgen deprivation therapy (ADT) is widely used in the treatment of prostate cancer. However, its use is controversial because of its potential for inducing cognitive decline. In this review, we summarized the findings of preclinical and clinical studies investigating the effects of ADT on cognitive function in prostate cancer. We discussed the methods used to assess cognitive function in these studies, elucidated the mechanisms through which ADT affects cognitive function, and highlighted recent advancements in cognitive assessment methods. The findings of this review serve as a valuable reference for examining the relationship between ADT and cognitive function in future studies. Besides, the findings may help clinicians understand the advantages and disadvantages of ADT and optimize the treatment plan so as to minimize the adverse effects of ADT.


Assuntos
Antagonistas de Androgênios , Cognição , Neoplasias da Próstata , Humanos , Antagonistas de Androgênios/efeitos adversos , Neoplasias da Próstata/tratamento farmacológico , Masculino , Cognição/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/etiologia , Fatores de Risco
16.
Appl Microbiol Biotechnol ; 108(1): 487, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412549

RESUMO

The hospital indoor environment has a crucial impact on the microbial exposures that humans encounter. Resistance to antibiotics is a mechanism used by bacteria to develop resilience in indoor environments, and the widespread use of antibiotics has led to changes in the ecological function of resistance genes and their acquisition by pathogens. By integrating the 16S rRNA Illumina sequencing and high-throughput-quantitative PCR approaches with water and air dust samples across seven departments in Peking University Shenzhen Hospital, China, this study yields intriguing findings regarding the department-specific variations, correlations and source tracing of bacteria, antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) within the hospital indoor environment. A notable observation was the pivotal role played by seasonal variations in shaping the bacterial composition across the entire hospital indoor environment. Another department-specific finding was the correlation between ARGs and MGEs abundance, which was evident in the overall hospital indoor environment, but not found in the blood test room, ophthalmology, and gynecology departments. Notably, as an important source of bacteria and ARGs/MGEs for the blood test room, the gynecology department also presented a close link between bacterial communities and the presence of ARGs/MGEs. Additionally, the results reiterate the importance of surveillance and monitoring of antibiotic resistance, specifically in Legionella spp. in man-made water systems, and highlight the significance of understanding genetic elements like Tp614 involved in gene transfer and recombination, and their impact on antimicrobial treatment efficacy. KEY POINTS: • The department-specific variations, correlations and source tracing of bacteria, ARGs, and MGEs were uncovered in the hospital's indoor environment. • Although each department exhibited consistent seasonal impacts on bacterial compositions, the co-occurrence between the presence of ARGs and MGEs was exclusively evident in the emergency, surgery, pneumology and otolaryngology departments. • The gynecology department emerged as a crucial source of bacteria, ARGs and MGEs within the hospital. Additionally, it was found to exhibit a significant correlation between bacterial communities and the presence of ARGs and MGEs.


Assuntos
Microbiologia do Ar , Bactérias , RNA Ribossômico 16S , Bactérias/genética , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , China , Humanos , Hospitais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Poeira/análise , Sequências Repetitivas Dispersas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Poluição do Ar em Ambientes Fechados/análise , Estações do Ano , Genes Bacterianos
17.
Appl Opt ; 63(12): 3219-3227, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38856470

RESUMO

This paper presents an adaptive focus stacking method for large depth-of-field (DOF) 3D microscopic structured-light imaging systems. Conventional focus stacking methods typically capture images under a series of pre-defined focus settings without considering the attributes of the measured object. Therefore, it is inefficient since some of the focus settings might be redundant. To address this problem, we first employ the focal sweep technique to reconstruct an initial rough 3D shape of the measured objects. Then, we leverage the initial 3D data to determine effective focus settings that focus the camera on the valid areas of the measured objects. Finally, we reconstruct a high-quality 3D point cloud using fringe images obtained from these effective focus settings by focus stacking. Experimental results demonstrate the success of the proposed method.

18.
BMC Public Health ; 24(1): 1787, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965484

RESUMO

BACKGROUND: Abnormal heart rate recovery (HRR), representing cardiac autonomic dysfunction, is an important predictor of cardiovascular disease. Prolonged sedentary time (ST) is associated with a slower HRR. However, it is not clear how much moderate-to-vigorous physical activity (MVPA) is required to mitigate the adverse effects of sedentary behavior on HRR in young and middle-aged adults. This study aimed to examine the joint association of ST and MVPA with abnormal HRR in this population. METHODS: A cross-sectional analysis was conducted on 1253 participants (aged 20-50 years, 67.8% male) from an observational study assessing cardiopulmonary fitness in Fujian Province, China. HRR measured via cardiopulmonary exercise tests on a treadmill was calculated as the difference between heart rate at peak exercise and 2 min after exercise. When the HRR was ≤ 42 beats·minute-1 within this time, it was considered abnormal. ST and MVPA were assessed by the IPAQ-LF. Individuals were classified as having a low sedentary time (LST [< 6 h·day-1]) or high sedentary time (HST [≥ 6 h·day-1]) and according to their MVPA level (low MVPA [0-149 min·week-1], medium MVPA [150-299 min·week-1], high MVPA [≥ 300 min·week-1]). Finally, six ST-MVPA groups were derived. Associations between ST-MVPA groups with abnormal HRR incidence were examined using logistic regression models. RESULTS: 53.1% of the young and middle-aged adults had less than 300 min of MVPA per week. In model 2, adjusted for possible confounders (e.g. age, sex, current smoking status, current alcohol consumption, sleep status, body mass index), HST was associated with higher odds of an abnormal HRR compared to LST (odds ratio (OR) = 1.473, 95% confidence interval (CI) = 1.172-1.852). Compared with the reference group (HST and low MVPA), the HST and high MVPA groups have a lower chance of abnormal HRR (OR, 95% CI = 0.553, 0.385-0.795). Compared with individuals with HST and low MVPA, regardless of whether MVPA is low, medium, or high, the odds of abnormal HRR in individuals with LST is significantly reduced (OR, 95% CI = 0.515, 0.308-0.857 for LST and low MVPA; OR, 95% CI = 0.558, 0.345-0.902 for LST and medium MVPA; OR, 95% CI = 0.476, 0.326-0.668 for LST and high MVPA). CONCLUSION: Higher amounts of MVPA appears to mitigate the increased odds of an abnormal HRR associated with HST for healthy young and middle-aged adults.


Assuntos
Exercício Físico , Frequência Cardíaca , Comportamento Sedentário , Humanos , Masculino , Feminino , Adulto , Estudos Transversais , Frequência Cardíaca/fisiologia , Pessoa de Meia-Idade , Exercício Físico/fisiologia , China/epidemiologia , Adulto Jovem , Teste de Esforço
19.
Mol Med ; 29(1): 72, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280526

RESUMO

BACKGROUND: Mitochondrial metabolism has been proposed as an attractive target for breast cancer therapy. The discovery of new mechanisms underlying mitochondrial dysfunction will facilitate the development of new metabolic inhibitors to improve the clinical treatment of breast cancer patients. DYNLT1 (Dynein Light Chain Tctex-Type 1) is a key component of the motor complex that transports cellular cargo along microtubules in the cell, but whether and how DYNLT1 affects mitochondrial metabolism and breast cancer has not been reported. METHODS: The expression levels of DYNLT1 were analyzed in clinical samples and a panel of cell lines. The role of DYNLT1 in breast cancer development was investigated using in vivo mouse models and in vitro cell assays, including CCK-8, plate cloning and transwell assay. The role of DYNLT1 in regulating mitochondrial metabolism in breast cancer development is examined by measuring mitochondrial membrane potential and ATP levels. To investigate the underlying molecular mechanism, many methods, including but not limited to Co-IP and ubiquitination assay were used. RESULTS: First, we found that DYNLT1 was upregulated in breast tumors, especially in ER + and TNBC subtypes. DYNLT1 promotes the proliferation, migration, invasion and mitochondrial metabolism in breast cancer cells in vitro and breast tumor development in vivo. DYNLT1 colocalizes with voltage-dependent anion channel 1 (VDAC1) on mitochondria to regulate key metabolic and energy functions. Mechanistically, DYNLT1 stabilizes the voltage-dependent anion channel 1 (VDAC1) by hindering E3 ligase Parkin-mediated VDAC1 ubiquitination and degradation. CONCLUSION: Our data demonstrate that DYNLT1 promotes mitochondrial metabolism to fuel breast cancer development by inhibiting Parkin-mediated ubiquitination degradation of VDAC1. This study suggests that mitochondrial metabolism can be exploited by targeting the DYNLT1-Parkin-VDAC1 axis to improve the ability of metabolic inhibitors to suppress cancers with limited treatment options, such as triple-negative breast cancer (TNBC).


Assuntos
Neoplasias de Mama Triplo Negativas , Canal de Ânion 1 Dependente de Voltagem , Animais , Humanos , Camundongos , Apoptose , Dineínas/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases , Ubiquitinação , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo
20.
Small ; 19(38): e2302015, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37222119

RESUMO

Heterojunctions are a promising class of materials for high-efficiency bifunctional oxygen electrocatalysts in both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). However, the conventional theories fail to explain why many catalysts behave differently in ORR and OER, despite a reversible path (* O2 ⇋* OOH⇋* O⇋* OH). This study proposes the electron-/hole-rich catalytic center theory (e/h-CCT) to supplement the existing theories, it suggests that the Fermi level of catalysts determines the direction of electron transfer, which affects the direction of the oxidation/reduction reaction, and the density of states (DOS) near the Fermi level determines the accessibility for injecting electrons and holes. Additionally, heterojunctions with different Fermi levels form electron-/hole-rich catalytic centers near the Fermi levels to promote ORR/OER, respectively. To verify the universality of the e/h-CCT theory, this study reveals the randomly synthesized heterostructural Fe3 N-FeN0.0324 (Fex N@PC with DFT calculations and electrochemical tests. The results show that the heterostructural F3 N-FeN0.0324 facilitates the catalytic activities for ORR and OER simultaneously by forming an internal electron-/hole-rich interface. The rechargeable ZABs with Fex N@PC cathode display a high open circuit potential of 1.504 V, high power density of 223.67 mW cm-2 , high specific capacity of 766.20 mAh g-1 at 5 mA cm-2 , and excellent stability for over 300 h.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa