Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 39(1): 2315227, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38421003

RESUMO

Pterostilbene (PST) is a naturally derived stilbene compound in grapes, blueberries, and other fruits. It is also a natural dietary compound with a wide range of biological activities such as antioxidant, anti-inflammatory, antitumor, and so on. Structural modifications based on the chemical scaffold of the pterostilbene skeleton are of great importance for drug discovery. In this study, pterostilbene skeletons were used to design novel anti-inflammatory compounds with high activity and low toxicity. A total of 30 new were found and synthesised, and their anti-inflammatory activity and safety were screened. Among them, compound E2 was the most active (against NO: IC50 = 0.7 µM) than celecoxib. Further studies showed that compound E2 exerted anti-inflammatory activity by blocking LPS-induced NF-κB/MAPK signalling pathway activation. In vivo experiments revealed that compound E2 had a good alleviating effect on acute colitis in mice. In conclusion, compound E2 may be a promising anti-inflammatory lead compound.


Assuntos
Transdução de Sinais , Estilbenos , Camundongos , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Estilbenos/farmacologia , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia
2.
Bioorg Chem ; 133: 106429, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841048

RESUMO

The pterostilbene skeleton is a promising chemical scaffold that exerts anti-inflammatory, anti-depressant, and anti-tumor effects. In this study, we aim to reduce in vivo and in vitro toxicity of compound 32 (preliminary work) and maintain its biological activity. A series of novel pterostilbene derivatives (D1-D43) were designed and synthesized, and their anti-inflammatory activities were screened. All compounds were screened to evaluate their inhibitory effect on LPS/Nigericin-induced IL-1ß production and pyroptosis. The structure-activity relationships was deduced, and finally 1-((E)-4-(2-ethoxyethoxy)styryl)-3,5-dimethoxy-2-((E)-2-nitrovinyl)benzene (D22) was found to be a low-toxic compound with most potent inhibitory efficacy (against IL-1ß: IC50 = 2.41 µM). Preliminary mechanism studies showed that compound D22 may affect the assembly of NLRP3 inflammasome by targeting NLRP3 protein, thereby inhibiting the activation of NLRP3 inflammasome. The in vivo anti-inflammatory activity indicated that compound D22 had significant therapeutic effects on DSS-induced mouse acute colitis models.


Assuntos
Colite , Inflamassomos , Estilbenos , Animais , Camundongos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Inflamassomos/antagonistas & inibidores , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estilbenos/química , Estilbenos/farmacologia
3.
Chem Biodivers ; 19(8): e202200039, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35794072

RESUMO

A series of novel pathalide-1,2,4-oxadiazole analogs were synthesized for discovering novel anti-inflammatory agents. After the assessment of their cytotoxicity in vitro, all compounds had been screened for their anti-inflammatory activity by evaluating their inhibitory effect on LPS-induced NO production in RAW 264.7 macrophages. SARs had been concluded, and finally compound E13 was found to be the most potent compound. This compound could also significantly decrease the production of iNOS and COX-2. Preliminary mechanism studies indicated that compound E13 could inhibit the TLR4/NF-κB and ERK/p38 signaling pathways. These findings indicate that E13 holds great potential to be a lead compound for discovering novel anti-inflammatory drugs.


Assuntos
Benzofuranos , Oxidiazóis , Animais , Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Oxidiazóis/farmacologia , Células RAW 264.7
4.
J Enzyme Inhib Med Chem ; 34(1): 1678-1689, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31530032

RESUMO

A series of novel 4-ferrocenylchroman-2-one derivatives were designed and synthesised to discover potent anti-inflammatory agents for treatment of arthritis. All the target compounds had been screened for their anti-inflammatory activity by evaluating the inhibition effect of LPS-induced NO production in RAW 264.7 macrophages. Among them, 4-ferrocenyl-3,4-dihydro-2H-benzo[g]chromen-2-one (3h) was found to be the most potent compound in inhibiting the productions of NO with low toxicity. This compound also exhibited significant inhibition of the productions of IL-6 and TNF-α in RAW 264.7 macrophages. Preliminary mechanism studies indicated that compound 3h could inhibit the activation of LPS-induced NF-κB and MAPKs signalling pathways. The in vivo anti-inflammatory effect of this compound was determined in the rat adjuvant-induced arthritis model.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Artrite/tratamento farmacológico , Cromonas/farmacologia , Interleucina-6/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Artrite/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cromonas/síntese química , Cromonas/química , Relação Dose-Resposta a Droga , Adjuvante de Freund , Interleucina-6/biossíntese , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estrutura Molecular , NF-kappa B/metabolismo , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/biossíntese
5.
Mol Cell Neurosci ; 90: 22-32, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29802938

RESUMO

Neocortical projection neurons consist of intracortical connected upper layer (UL, layer II-IV) neurons and subcortical connected lower layer (LL, layer V-VI) neurons. Afferent activity from the thalamus regulates layer-specific gene expression during postnatal development, which is critical for the formation of proper neocortical cytoarchitecture. Here, we show that activity-dependent gene regulation is confined to UL cortical neurons, but not LL neurons, and that this distinction is likely due to epigenetic modifications of chromatin. We found that the immediate early genes (IEGs), EGR1 and c-FOS, are downregulated in all cortical laminar layers in the absence of afferent activity in vivo. Transcriptional assays demonstrated that EGR1 and c-FOS are able to bind to the promoters of UL- and LL-specific genes to induce transcription. Furthermore, we discovered that LL neurons express higher levels of heterochromatin markers, such as H3K9m3 and H4K20m3, compared to UL neurons. Our results suggest that differential epigenetic modifications of chromatin is an intrinsic mechanism that underlies the different sensitivities of cortical neurons to activity-dependent gene regulation.

6.
Toxicol Lett ; 373: 94-104, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435412

RESUMO

Microcystin-LR (MC-LR) has been recognized as a typical hepatotoxic cyclic peptides produced by cyanobacteria. Nowadays, due to the frequent occurrence of cyanobacterial blooms, the underlying hepatotoxic mechanism of MC-LR has become the focus of attention. In our present work, the mutagenic effect of MC-LR on human normal hepatic (HL-7702) cells regulated by cGAS was mainly studied. Here, we showed that exposure to MC-LR for 1-4 days could activate the cGAS-STING signaling pathway and then trigger immune response in HL-7702 cells. Notably, relative to the treatment with 1 µM MC-LR for 1-3 days, it was observed that when HL-7702 cells were exposed to 1 µM MC-LR for 4 days, the mutation frequency at the Hprt locus was remarkably increased. In addition, cGAS in HL-7702 cells was also found to complete the nuclear translocation after 4-day exposure. Moreover, co-immunoprecipitation and homologous recombination (HR)-directed DSB repair assay were applied to show that homologous recombination repair was inhibited after 4-day exposure. However, the intervention of the nuclear translocation of cGAS by transfecting BLK overexpression plasmid restored homologous recombination repair and reduced the mutation frequency at the Hprt locus in HL-7702 cells exposed to MC-LR. Our study unveiled the distinct roles of cGAS in the cytoplasm and nucleus of human hepatocytes as well as potential mutagenic mechanism under the early and late stage of exposure to MC-LR, and provided a novel insight into the prevention and control measures about the hazards of cGAS-targeted MC-LR.


Assuntos
Cianobactérias , Reparo de DNA por Recombinação , Humanos , Hipoxantina Fosforribosiltransferase/farmacologia , Microcistinas/toxicidade , Hepatócitos , Nucleotidiltransferases/farmacologia , Mutagênese
7.
Medchemcomm ; 8(7): 1498-1504, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108861

RESUMO

Based on the SAR analysis of glycyrrhizin, 18α-glycyrrhetinic acid monoglucuronide (18α-GAMG) with strong inhibition against LPS-induced NO and IL-6 production in RAW264.7 cells was discovered. Western blotting and immunofluorescence results showed that 18α-GAMG reduced the expression of iNOS, COX-2, and MAPKs, as well as activation of NF-κB in the LPS-stimulated RAW264.7 cells. Further in vivo results showed that 18α-GAMG could significantly improve the pathological changes of CCl4-induced hepatic fibrosis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa